12

Working with JSP

If you need information on: See page:

Understanding JSP 390

s

Creating Simple JSP Pages _ , 396

Implementing JSTL Tags 460

Chapter 12

The Chapter11, Working with Servlet Programming, has described the importance of Servlets in Web programming,
Servlets have, till now, been effectively used to create efficient Web applications. However, Servlets too are
giving way to superior technology. These days, Servlets, as a popular means to create Web pages, have been
replaced by better technologies, such as JavaServer Pages (JSP). Java Servlets have many shortcomings that have
contributed to their decline. The major shortcomings are:

O Inability to use IDEs—You cannot use Integrated Development Environments {IDEs) to design HTML
views. This increases the development time of Web applications.

U Inability to use HTML Designer— You cannot use HTML designer services to prepare the presentation
view. Instead, you need to depend on the Java programmer to prepare this view.

O Dependence on Web configuration —Servlet programs depend on the Web configuration. The web.xml file
is used to configure your Servlet. When you create several views by using Servlets, you have to ensure that,
in the web.xml file, each Servlet is mapped to invoke the correct Servlet, This increases the complexity of
your Web site because you must know which Servlet-mapping {in the web.xml file) has been used to invoke
which Servlet.

2 Recurring Recompilation—When you make changes in the code of a Servlet, you need to recompile the
Servlet’s source file, This is a problem when we create complex views because each time you make a
change; you have to compile the modified Servlet program before generating the output.

To solve these problems, we want our HTML page, generated with the help of some IDEs, to include additional

instructions wherever dynamic content is required. For example, a page with additional instructions can be

parsed and resolved into a standard server-side extension {that is, a Servlet), which is understood by the Web
container. If these additional instructions are tag-based, they can be directly used by Web designers to create

HTML views. Moreover, tag-based instructions are easily understood by the IDEs used to design HTML views.

The requirement of tag-based instruction has impelled the introduction of JSP technology.

In this chapter, we discuss what JSP is and how it is used to create dynamic Web pages. We also discuss why JSP
is preferred over Servlets to create views. In addition, we look at the JSP architecture as well as give a detailed
description of the various stages of the JSP life-cycle. We also create a simple JSP page. In addition, you learn
about scripting and directive tags used in JSP. Moreover, the chapter also explains how to use the implicit
objects, The chapter also demonstrates the implementation of JavaBeans in a JSP page. Towards the end of the
chapter, the JSP standard tag library is also explained in detail.

Let’s start with a brief introduction of JSP.

Understanding JSP

J5P is a standard Java extension used to simplify the creation and management of dynamic Web pages. JSPs
allow to separate the dynamic content of a Web page from its static presentation content. As described earlier,
programming in Servlets is very complex and requires additional files, such as web.xml and Java class files, to
generate the required Web pages. JSP offers an easier approach to build dynamic Web pages. JSP documents
consist of HTML tags and special tags, known as JSP tags. HTML tags are used to create static page content and
ISP tags are used to add dynamic content to Web pages. JSP pages are compiled into a Java Servlet by a JSP
translator, This Java Servlet is then compiled and executed to generate an output for the browser (client).
Building dynamic Web pages by using JSP offers the following benefits:

O Web pages created by using JSP are portable and can be used easily across multiple platforms and Web
servers without making any changes. .

Q Programming in JSP is easier than in Servlets because of the introduction of tag-based approach in JSP.

O JSP pages are automatically compiled by the Web server, such as Tomcat and WebLogic. Developers need
not compile a JSP page when the source code of the JSP page is changed.

O One of the most important benefits of JSP is the separation of business logic from the presentation logic. The
tag handler classes or JavaBeans contain business logic whereas JSP pages contain presentation logic. The
separation of business and presentation logic makes an application created in JSP more secure and reusable.

Now that we are familiar with the approach to build dynamic Web pages using JSP, let’s learn about the
advantages of JSP over Servlets.

390

Working with JSP

Advantages of JSP over Serviets

JSP provides a better server-side scripting support as compared to Servlets. Java developers can create Servlets
easily, but for Web page designers, handling Java code is always a tough job. A JSP page can have HTML code,
and some Java code embedded with the HTML code. In this way, creating a Web page becomes easy as the basic
designing of the page is done by using the HTML code. We can use the Java code to add dynamic content to the
page. The Java code is embedded by using different JSP constructs, which is discussed later i the chapter.

The following are the reasons to prefer JSP over Servlets:

0 Most of the content of a Web page is static and different components need to be placed on the page in a
symmetrical way. These static pages are designed by Web designers by using HTML code. Designing static
pages using Servlets require a good knowledge of Java, but Web designers may not be comfortable with
Java programming constructs. In addition, while using Serviets, you have to enclose HTML code in the
out.println () method, which disables all IDE support for generating HTML content. Therefore, using JSP is
always easier than using Servlets for the same HTML output.

0 You need to recompile your Servlet for every single change in the source code of the Servlet; whereas in
case of JSP, recompilation is not required since JSP are autematically handled by the Web container for any
update in their code.

O Servlets cannot be accessed directly and have to be fll'St mapped in the web.xml file, whereas a JSP page can
be accessed directly as a simple HTML page.

O Both, Servlets and JSPs are server-side components used to generate dynamic HTML pages; however, JSP is
preferred over Servlet as it is developed by using a stimple HTML template and automatically handled by
the JSP container.

These advantages of JSP make it a popular component to use in the presentation layer of any Web application.

To bring out the advantage of using JSI* over Servlets, let’s take an example. Let’s assume that a user needs a
Web page with some dynamic content (for example, current date and time).

You can create a simple Servlet to display current date and time. Listing 12.1 shows the code for the FirstServlet
Servlet and its doGet() method, which generates the required output (you can find the FirstServletjava file in the
code\Java EE\ Chapter 12\ JSPEx folder):
Listing 12.1: The FlrstServlet java Flle

import Java d0,%5 S

import javax,ser
import javax 58

‘. sponseresponse) : ‘; :

" out. wr1t:e("<t1t'ie>F1rst I8P Page<[t1tle>");._ S T T v
Cout, wnte{i'qheadf') : S B

"f.a.suut'wize{m oate()-to&trmgo}* SRR T Lo s
out, wrlteC":chrb"). N ' :
out, wri te(“<hr/>ne‘! 1o wor'ld'
")
- autswrite(< bodys") ;10 :
T write("</hm‘i>"),
. ouE.close()y .. ;

391

Chapter 12

This source code for your Servlet needs to be compiled, and the generated class file needs to be placed in the
WEB-INF\classes folder of a Web application. In addition, a Servlet mapping is done in the deployment
descriptor (web.xml) to access this Servlet.

Alternatively, you can replace this Servlet by a simple JSP page. Listing 12.2 provides the code for the JSP page
to display current date and time (you can find the firstpagejsp file in the code\Java EE\ Chapter
12/]SPEx/ firstpage.jsp folder on the CD):
Listing 12.2: The firstpage.jsp File

<%Q page import="java.util.pate;"% .

- <htmls"
T advgdls T e T e
<titlesFirst ISP Page</title> .. -
</head> - S
<body> !
out.printin(new Date().tostring(3); . - -

: C<braHel To worldl </brs w0

</b°dy>) e
</html>

You can see some delimiters and objects being used here, such as <%@ %>, <% %>, and out. These JSP
elements and implicit objects have been discussed in detail in the Working with JSP Basic Tags and Working with
the Implicit Objects sections in this chapter. This page can be accessed as a simple HTML page and does not need
to be compiled and mapped in web.xm! every time the Web container accesses it. When you compare the views
generated by the Servlet and JSP pages, you find that both show the same output.

We have discussed the advantages of JSP over Servlet. Next, we discuss the tag-based approach with respect to
JSP.

Introducing the Tag-Based Approach
JSP is totally tag-based, which means that each piece of code in JSP is enclosed within a tag. JSP tags reduce the
necessity of large amount of Java code in JSP pages by implementing the functionality of the tags into tag
implementation classes. These tags help developers build dynamic pages, improve their code by reducing Java
code, and separate the presentation logic from the business logic.
ISP tags have the following features:
O Reduce Web development and maintenance costs

Help you to reduce Java code in a JSP page

Make the task of developing Web applications easier and faster

Enable developers to reuse Java code in multiple Web applications

Ensure ease of work with Java Beans within JSP tags

After learning the benefits of the tag-based approach used in JSP, let’s discuss the JSP architecture next,

Describing the JSP Architecture

JSP specifications demonstrate two approaches to build Web applications by using JSP. These approaches are
known as JSP Model 1 and JSP Model 2 architecture, respectively. Let's look these models in detail.

The JSP Model I Architecture

In JSP Model I architecture, the Web browser directly accesses the JSP pages of a Web container. The JSP pages
interact with the Web container’s JavaBeans, which represent the application model. When a client sends a
request from a JSP page, the response (that is, the JSP page) is sent back to the client depending on which
hyperlinks are selected or which request parameters are invoked by the client request. If the generated response
requires accessing a database, the JSP page uses JavaBean, which gets the required data from the database,
Figure 12.1 shows the architecture of JSP Model I:

0OCO0OOD

392

Working with JSP

Request
Web Browser i

+
Response

JavaBean

Web gontainer Database
Server

Figure 12.1: Showing JSP Model | architecture

The JSP Model II Architecture
The JSP Model I architecture uses Servlets as well, which are positioned between the Web browser and the JSP
pages. The Serviet acts as a controller to dispatch requests to the next JSP view, such as the URL, based on the
client request and input parameters. It also creates JavaBean instances, if they are required by the JSP page. The
controller also decides which JSP page needs to be forwarded as a response, based on the client request. The
JavaBean invokes the database server if data is needed from a database server. Figure 12.2 shows the architecture

of JSP Model IL.
- ™,
& . .
S
B L
i m_{ ISP H JavaBean o8
. {

o~
‘Web contaner Database Server

Figure 12.2: Showing JSP Model Il architecture
Now that we are familiar with JSP architecture, let’s learn about the JSP life-cycle in the next section.

Describing the JSP Life Cycle

Before discussing the life cycle of JSP, it must be remembered that JSP isn’t executed directly. The execution of
JSP follows a process in which a JSP page is first translated into its corresponding Servlet and then the source file
of this Servlet is compiled into a class file. This Servlet is then loaded into memory and initialized, similar to any
other Servlet, Every time a JSP is requested, its corresponding Servlet is executed. Therefore, most of the stages
of the JSP life cycle are similar to that of a Servlet. The major stages of the life cycle of a JSP page are as follows:

Page Translation

Compilation

Loading & Initialization

Request Handling

Destroying (End of service)

Let’s now discuss each stage of the JSP life-cycle one by one.

The Page Translation Stage
In the page translation stage of the JSP lifecycle, the Web container translates the JSP document into an
equivalent Java code~that is, a Servlet. Usually, a Servlet contains Java code with some markup language tags,
such as HTML or XML. JSPs, on the other hand, consist primarily of markup language with some Java code. The
objective of page translation, therefore, is to convert a document chiefly consisting of HTML/XML code, to one
that has more of Java code, which can be executed by the Java Virtual Machine (JVM).

[Iy

393

Chapter 12

The translation of JSP is automatically done by the Web server. The translation of JSP can take place either at the
time of deploying the JSP (a process generally known as JSP pre- compilation), or at the time when a request for
the JSP is received for the first time.

In this stage, the Web container performs the following operations:

Q Locates the requested JSP page

O Validates the syntactic correctness of the JSP page

O Interprets the standard JSP directives, actions, and custom actions used in the JSP page
Q Writes the source code of the equivalent Servlet for the JSP page

All requests for a given JSP page are served by its corresponding Servlet class. This Servlet class works as a
simple Servlet, similar to what we designed in Chapter 11, Working with Servlet Programming.
Listing 12.3 shows the Servlet generated for the firstpage JSP page:
Listing 12.3: The firstpage_jsp.java File
- Ppackage org.apache.jsp; .
cimport Javax sarviet,*; - . .
H;_‘port Javax. serv1et http. H
“import javax servlet.jsp,*;
import java.util.pate: . : :
public final class f1rstpage_jsp extends org. apache Jasper runt1me HtthspBase
implements org. apache jaspér.runtime. . JspSourcebepe dent {
private static java.util.tist _Jspx_dependants,_:t
. public .Object getbependants(}’ { - LA
return _Jspx_dependants, S

pub11c void: _JspServ1ce(HttpServ?etRequest request
HttpsarvTetResponse résporisejy. = " : R
throws java.ip.IpException, ServietExcept1en { L
Ispractory . _jspxFactory = null;’ . . S g
pageContext pageContext -_nu]?-__
HrtpSessioh session.=.null;.
ServletContext app11cat1on = nuli;
servietConfig config = null;
Ispwriter out = null:
object page = this;
. JSpWriter, wisproout = null; R
lPagegontext _)spxﬁpagehcontext - nul]'
try.

“]spxFactsry JspFactory getDefau]tFactory(), N
response.setcontentType("text/htm1"Y; e
*‘pagecontext = _jspxFactory.getPageContext(this, request, Fesponse;
null, true, §192, true); . : PR
_jspx_pagemcontext = pageContext;
application = pageContext.getServletContext(};"
config = pageContext.getservietConfig();
session = pageContext.getsession();
out = pageContext.getout();
LJspx_out = out;
aut,.write("\r\n");
out.write("<htmi>\r\n");
out.write(" <head>\r\n");
out.write(” - . <t1t1e>F1rst JSP Pagex/t1t1e>\r\n")
cout.writed” . </head> \r\n");. .
coout.write(t, <hody>\r\n"), _f- o
-~ out.write(® A N
aut.printTn(new Date(). tOStTTﬂg()). .
out write{"\r\n"): - o

394

Working with JSP

out.write(” . <hr/>\r\n"}; _
out.write(" 7 ‘ <bry/>hello ‘worldl
\r\n");
‘eut.writel"™ . </body>\r\n"); o

out.write("</htmi>\r\n");
Cout.writed™\m\n™); . o

.} catch (Throwable €) {.- :. o

3 (1(t instanceof ski pPageException)) {

out = _jspx.outi. oo . o

if (out !'="null && out.getBuffersize() 1= OO

out.clearsuffer(dy - Sl s '

]‘.f (_jspx_page_context != null) _jspx_page_context.handlePageException(t};
¥ finally o She St - D
(it (jspxFactory t= nuTl) _hjspxFact_ory.releasepagecontgxt(_jspx__page_.context):

1
3

The Serviet created as a result of the translation of JSP has the following special characteristics:

O The name of the Servlet generated for a ISP page is the name of [SP merged with “jsp” and separated by an
underscore. Therefore, for the firstpage.jsp page, we have a Servlet class with the name “firstpage_jsp” and
its source code, firstpage_jsp.java, as shown in Listing 12.3.

O The generated Serviet class is a subtype of the javax.servletjspJspPage class or the
javax.servletjsp.HttpJspPage interface, depending on the protocols you are using. HttpJspPage is most
widely used, whereas JspPage is used by Web containers that support non-Http protocols.

Q@ The generated Servlet implements the jspinit(), jspDestroy(), and _jspService() methods. You can compare
them with the init (), destroy (}, and service (} methods of a common Servlet class, since they are used in the
same manner.

The jspInit() and jspDestroy() methods are invoked once in the lifetime of JSP, whereas the _jspService() method

is executed each time a JSP page is requested. All the presentation logic placed in a JSP page is enclosed in the

_jspService() method. You can see how different objects, such as pageContext, application, session, and out, have

been obtained and used in the _jspService() method. We will study about these implicit objects of JSP in the

Working with the Implicit Objects section of this chapter.

The JSP page translation occurs only when necessary, that is, at some point before a JSP page has to serve its first

request. This process is also performed when the JSP source code is updated and the page is redeployed. A Web

container can decide when the translation should occur. The two possible instances where a translation can
occur are:

Q When a first-time user requests a JSP page.

O When aJSP is loaded into a Web container, This is also called JSP pre-compilation.

If there is any error in the translation of the JSP life cycle, then the container raises an exception, 500 (internal
server error). If any change occurs in the JSP page, all the stages of the J5P life cycle are executed again.

The Compilation Stage
The compilation stage of the JSP life cycle follows the page translation stage. In this stage, the J5P container
compiles the Java source code for the corresponding Servlet and converts it into Java byte (class) code. After the
class file is generated, the container can decide to either discard the code or retain it for debugging. Generally,
most containers discard the generated Java source code by default. After the compilation stage, the Servlet is
ready to be loaded and initialized.

The Loading & Inftialization Stage
In the loading and initialization stage of the JSP life cycle, the JSP container loads and instantiates the Servlet that
has been generated and compiled in the translation and compilation stages, respectively. The Web container, as
part of this process, performs the following operations:

395

Chapter 12

O Loading—In this stage, the Web container loads the Servlet generated in the translation and compilation
stages, using the normal Java class loading option. If the Web container fails to load the class, it terminates
the loading process.

O Instantiation— After the Servlet class is loaded successfully, the JSP container creates an instance of the
Servlet class. To create a new instance of the generated Servlet, the JSP container uses the no-argument
constructor. The JSP translator (part of the JSP container) is responsible for including a no-argument
constructor in the Servlet generated after the translation of the JsP.

O Initialization— After the JSP equivalent Serviet object is instantiated successfully, the JSP container
initializes the instantiated object. As per the Servlet’s life cycle, the container initializes the object by
invoking the init (ServletConfig) method. This method is implemented by the container by calling the
jspInit() method. This indicates that the jspinit() method acts as the ini t(ServietConfig) method of the Servlet.

If the Loading and Initialization stage is performed successfully, the Web container activates the Servlet object
and makes it available and ready to handle client requests.

 Note il

The JSP page equivalent Serviet instance piaced into service by a container may not handle any request in its lifetime.

The next stage in the JSP life cycle is request handling.

The Request Handlling Stage

In the request handling stage of the JSP life cycle, the Web container uses only those objects of a JSP equivalent

Servlet that are initialized successfully, to handle the client request. The container performs the following

operations in this stage:

O Creates the ServletRequest and ServletResponse objects. If the client uses HTTP protocol to make the
request, the container creates HttpServletRequest and HtipServletResponse objects, where the request object
represents the request. That is, the request data and client information can be retrieved by the Servlet by
using the request object. The response abject can be used by the Servlet to generate the response.

d As per the Servlet’s life cycle, the Web container invokes the service {) method on the Servlet object by
passing the request and response objects created in the preceding step. In case of JSP equivalent Servlet, the
container invokes the _jspService () method.

Let’s now look at the final stage of the JSP life cycle, that is, the destroying stage.

The Destroying Stage

If the Servlet container decides to destroy the JSP page’s Setrvlet instance, that is, if it decides to end the services

provided by the Servlet instance, it performs the following operations:

O It lets all the currently running threads in the service method of the Serviet instance complete their
operations. Meanwhile, it makes the Servlet instance unavailabie for new requests.

O After the current threads have completed their operations on the service() method, the container calls the
destroy() method on a Servlet instance, which invokes the JspDestroy() method.

G After the destroy method is processed, the Servlet's life cycle is complete and the Web container releases all
the references of the Servlet instance and renders them for garbage collection,

We now learn how to create simple JSP pages next.

Creating Simple JSP Pages

In this section, we are creating a simple Web application with two J5P pages. As we have not yet discussed the
various constructs used in JSP, such as scriplets and directives, we create simple JSP pages to give you an idea of
how they can be designed, used, and accessed by a Web application. Let's create the SimpleApp Web application
containing two JSP pages. Create the Chapter 12 directory in the JavaEE directory (which you have created in
Chapter 11, Working with Servlet Programming). Now, create the SimpleApp folder in the Chapter 12 directory.
You can also find the Simple App application in the code\ Java EE\ Chapter 12\ SimpleApp folder on the CD.

396

Working with JSP

The first JSP page we will create is userjsp, which provides an HTML form with two input fields to enter the
name and city of a user. Listing 12.4 pravides the code of the user.jsp page (you can find the user.jsp file in the
code\ Java EE\ Chapter 12\SimpleApp folder):
Listing 12.4: The user.jsp File
<% page import="java.util,*'¥" "
<! DOCTYPE HTML PUBLIC “-//wac/fnm
<html>
<head>

01 Transitional//en"s

<tit1e>we1cm<{tit1e>

" afheath
<body>. .o

| <X=new Date() tnSt. g%

Co<hry o
“<hZ>Wel come<fh2> T

<form actwn= showuser]sp

‘</body> .

</html> - B - . : Sl

The second JSP page we create in thlS appllcahon is showuser Jsps Whl(’h shows the name and city that can be

entered by the user through the input fields of the user.jsp page. Listing 12.5 shows the code of the showuser jsp
page (you can find the showuser.jsp file in the code\Java EE\ Chapter 12\ SimpleApp folder):

Listing 12.5: The showuser.jsp Flle
<% page import="java. utit:
<!DOCTYPE HTML Pusuc '=f
<html> :

<head> : EEEAES 55
<ti t’le>We}come</nﬂe> x
</head> . o

<hoady> . : e

=new Date(). tos1:r1ng()%>

<hr> :

Hello de=request getParamete (" _“)%><fb>-<hm

.- ...%a hrefatuser,jsp”>Backe/
</body> L

</html> : T s '
The directory structure of the Web apphcatlon, whlch has been named StmpIeApp, can be seen in Flgure 12.3:

397

Chapter 12

Figure 12.3: Showing Directory Structure of the SimpleApp Application
The WEB-INF\ classes and WEB-INF\lib folders shown in Figure 12.3 are empty as we have not created any
class or used any library, but are created here as per the standards for developing Web applications.

Since we are using JSPs, you do not need to provide any kind of mapping in the web.xml! file. Listing 12.6 shows
the code of the web.xml file: (you can find the web.xml file in the code\Java EE\ Chapter 12\SimpleApp\ WEB-
INF folder on the CD):
Listing 12.6: web.xml

<7xm1: verswn::”l o

encoting= UTF-8"7>

RO i
o ,xm‘lns xsi=“htt'

‘ http //Java S
You can sunply place thls SlmpleApp pro]ect folder into the webapps folder located in the Tomcat installation
directory to deploy it on the Tomcat server. Start your server and access the user.jsp page by entering the URL
http:/ /locathost:9090/SimpleApp/ user.jsp into the Web browser. The output of the user.jsp page is shown in
Figure 12.4:

Tk "“, vien Frvorles Tooh Help.

{ Pk 14124824 15T 2008

Dot D ‘I-mrpmm-dldndt«ﬂ ’ -;'- {;éus; -

Figure 12 4: Showm’ Output of the user.jsp Page

You can click the Enter button after entering a string into the User Name and City fields. Assuming that the user
enters “Suchita” and “Delhi”, respectively, you will see the showuser.jsp page, as shown in Figure 12.5:

i Fri hat 24 121544 [T 2009
1 Helo Suchita
! Your City 5 Delhi

i Back

B L Geemapmesbedeon T i -
Flgure 12 5 Showmg Output of showuser jsp page

This was a simple application created with two JSP pages. Though the code written in Listing 12.4 and Listing
12.5 is quite simple and mostly contains HIML tags, other JSP constructs have also been used. For example, you
can see JSP scriptlets enclosed in <%= %> and JSP directives enclosed in <%@ %>. Let’s now discuss the JSP
basic tags in detail.

398

* Working with JSP

Working with JSP Basic Tags and Implicit Objects

A JSP document contains elements or tags, such as directives, scripting elements, and implicit objects. Directives
are used in a JSP document to include the content of a static or dynamic file within another file. Directives are
also used to import Java files within JSP pages. Scripting elements, such as declaration tags, expression tags, and
scriptlet tags, help declare variables and object references in a JSP page. Scripting elements also help generate
and display dynamic content.

The Servlet APl includes interfaces such as HttpServletRequest, HttpServletResponse, and HitpSession, which-
provide convenient abstractions to the developers, These abstractions encapsulate the object’s implementation;
for example, the HttpServletRequest interface represents the HTTP request sent from the client along with
headers, form parameters, and so on, and provides convenient methods such as getParameter() and getHeader()
that extract relevant data from the request. JSP implicit objects provide a convenient way to access the interfaces
and objects of the Servlet API, without writing additional code.

We have used both JSP page and JSP document to denote a JSP file. These terms have been used interchangeabiy.
The JSP page is a term used to refer a JSP file written by using the traditional JSP syntax, whereas the term JSP
document is used fo refer a JSP file written by using XML syntax of JSP supported by the JSP 1.2 specification.

In this section, we learn about scripting and directive tags used in JSP. In addition, we learn to work with
implicit objects.
Let’s start by discussing JSP scripting tags.

Exploring Scripting Tags
JSP scripting tags, also called as JSP scripting elements, allow you to add a script code into the Java code of a JSP
page generated by the [SP* translator, In most of the cases, Java is the scripting language used to build a JSP page;
however, other supported languages can also be used, depending on the Web containers.
You learn how to set the scripting language for a JSP page in the next section. However, before that, let’s discuss
about the different types of scripting tags.

Types of Scripting Tags
JSP defines three scripting tags, namely scriptlet, declarative, and expression tags. We describe these tags in
detail next.

The Scriptiet Tag
Scriptlet tags allow you to write the script code (or the Java code) for implementing the_jspService method
functionality. The JSP translator translates the statements of this tag into the _jspService method of the generated
servlet. You can use a scriptlet tag to perform the following tasks:
O Declare variables that you can use later in a JSP page. That is, you can declare variables and write valid

expressions in the page scripting language, within the scriptlet tags.

O Use any of the JSP implicit objects or any object declared with a <jsp:useBean> element.
Note that if the script code is not valid, an exception is thrown at the Compilation stage of the JSP lifecycle.

You can include multiple scriptlet tags in a single JSP document. The traditional JSP Syntax to use a scriptlet tag
is as follows:
& .
script code (a'l'lows mu1t1 p'le statements)
%>
The XML based syntax for the scnptlet tag is as follows
<jspiscriptlet> = ...
 gcript.code (allows mul ti ple statementS)
</fsprseriptiets:
The following code snippet shows the 1mplementahon of the scrlptlet tag:

399

Chapter 12

<htm1><body> _
for (%nt 1=0-1<S,1++} % g
5 oUtiprintlndid; e

%

</htm1><}bon> . o B ,

In the preceding code snippet, the for Ioop of Java has been used in a]SIJ page to prmt numbers 1 to 5 in five

lmes The servlet code for thlS JSP page, generated by the JSP contamer, isas follows

coen U pubTe o wodd _.?sps '
‘response) SErY

-HttpservietResponse

_'for (Nt i=0:i<hii+4) {
out.print(i); ..

The Declarative Tag
The declarative tag allows you to write the script code that you need to provide in the generated Servlet class,

outside the _jspService() method. This tag allows you to declare instance and class variables and implement class
methods such as }spimt and]spDestroy The syntax of the declarative tag is as follows:

The XML based syntax for the declaratlve tag is as follows
§ xjﬁp-dechmtwm :

“Seript code:
s/ispsdeclarations. . :
The followmg code sruppet shows the use of the declaranve tag

dnvoagby
At fuuﬁm: ay {.
return a;

e
<%a;=1 %> ‘
dant.nriut]n VEL S ; : : : , e

In the preceding code snippet, we declare two mteger vanables, a and b and deflne a functlon, fun() by using

the declarative tag. Then, we assign 1 as the value to the a variable and pass it as an argument to the fun()

function. The fun() function processes the argument and stores the result in the b variable. Finally, the value
received by the b variable is displayed on the browser.

The Expression Tag
The expression tag allows you to write a Java expression, which is then resolved and the resultant value is
displayed. The expression tag places the given Java expression in the out.print() method during the translation
stage of the JSP life cycle. Consequently, the output of the Java expression is displayed with the output of the JSP
page.
This tag also provides a simple and convenient way to access the script (i.e. Java) variables. The syntax of the
expression tag is as follows:

The XML based syntax for the expression tag is as follows:

400

Working with JSP

CLoxispiexpressions
. script code (allo
</Isprexpressions -7 R :
The following code snippet shows the use of the expression tag:
LNt count; ¥s s s st i
“<htmixctody> - -
o countes; B
/. This. page- s requ
</bodys</htmls .o R R R &
The preceding code snippet can be embedded on a JSP page to count the number of requests received for the
specific JSP page. Each time a new user accesses this Web page on the browser, the value of count is incremented
by 1, which is displayed on the browser as well. For example, when a user accesses this page for the first time,
the count variable is declared and is initialized at 0 (by default). The expression written in the scriptlet tag
{<%count++%>) increments the value of the count variable by one and prints this value on the Web page. Now,
when the other user accesses this page, the value of count is incremented by 1 and the browser display the result
as 2.

You must consider the following points when using expression tags:

@ Don’tend an expression with ‘;” since the expression given in this tag is placed into the out.print() method.
O The expression given in this tag can be resolved into any type, such as int, float, double, boclean, String, or

Object; but not to void.

If you write any code violating these rules, a translation stage error is raised. In addition, nested scripting tags
are not allowed while using expression tags. It means a scripting tag cannot have another type of scripting tag,
For example, in the following code snippet, the expression tag (<%= %>) is nested within the scriptlet tag (<%
%>) which would raise a translation error:
<% :

Working with JSP Scripting Tags

Let’s now learn how to use JSP scripting tags, such as declaration, expression, and scriptlets in an application.
Use of scripting tags varies as you go from building simple applications to complex ones. In simple applications,
we use Servlet, JSP's scripting tags, with JavaBeans to build Web applications; whereas in complex applications,
the scripting tags are used with custom tags and other Model-View-Controller (MVC) frameworks, such as
Struts and JSF. In this subsection, we create the ScriptingElements application to demonstrate the use of the
scripting tags.
The ScriptingTags.jsp page, as shown in Listing 12.7, uses page directives to import the java.util package and
specify the scripting language as Java. In the declaration tag, we declare three integer variables: count, a, and b.
We then define a function, fun(), which multiplies the integer value of ‘a’ variable, passed as an argument, with
10 and returns the result of the multiplication. The count variable is used to keep track of number of times this
Web page is being accessed. Listing 12.7 shows the code for the ScriptingTags.jsp page (you can find the
ScriptingTags.jsp file in the code\Java EE\Chapter 12\ ScriptingElements folder on the CD):

Listing 12.7: The ScriptingTags.jsp File

Chapter 12

for (int i=0;i<5;i++) { . T
out . printtn("value of iin 1terat10ﬂ R
no. Yeis" : <bs™ +1+"<hr/>")
}
b=funfa)y . .. i
out. prfnt’in(“ﬂame returned by ﬁm(} .&1bsp. .<h>"+b+ </h:><brf>")f

B .

2 ThiS ﬁage '{s nequested hy <b=-<$ts=countx»<
©<H=new DateO¥s</bs. -

</bodyz</html> . .
You do not need to map this JSP page in the web xmi flle, however, an empty web xml file must exist at the
appropriate place in the root directory. An empty web.xml configuration file is shown in the following code
snippet:

<webrapp/> ; :
To run this application, perform the followmg steps

number:__nf t‘lmes on date

1. Create a new Web Project and name it ScriptingElements.

2. Store the ScriptingTags.jsp and web.xml files in the ScriptingElements directory according to the standard
directory structure of Web application. Figure 12.6 shows the directory structure of the application created
in Listing 12.8:

50 saptegelements

. B WEBLW
;i3 dasses
PRl
@ weboo

- @ smotngTagsjs

Figure 12.6: Showing Directory Structure of the ScriptingElements Application
3. Deploy the ScriptingElements folder on the Tomcat server.

4. Start the Tomcat server and browse the applicaion by using the URL
http://localhost:9090/ScriptingElements/ScriptingTags.jsp. The output of the application
is displayed in the Web browser, as shown in Figure 12.7:

Using Scripting Elements
(| Vaibe of i i gevation po & 0
Vale of i inderationno.1: 1
1 Valoo of i in deratioe ne. 2 2
! Valos ofi indermticn no 3: 3
[i Vo of i in eration oo 4: 4
H Vol remed by fimd). H
; ‘This page is requested by 1 munher of tmes oo dare Fri Jul 24 12:43:39 15T 2009,

- “ |P o“_.... P

,OW
B i B i

Figure 12 7: Showmg tha Use of Scrlptlng Elements

Figure 12.7 shows the use of JSP scripting tags in ScriptingTags JSP page. The scripting tags are used to iterate
the values of the counter variables. Figure 12.7 also shows the number of times a user has requested the specific
Web page.

After discussing about the scripting tags, let’s now explain how to use the implicit objects in a JSP page.

Exploring Implicit Objects
JSP implicit objects are used in a JSP page to make the page dynamic. The dynamic content can be created and
accessed by using Java objects within the scripting elements. JSP implicit objects are predefined objects that are
accessible to all JSP pages. These objects are called implicit object because you don’t need to instantiate these
objects. The JSP container automatically instantiates these object while writing the script content in the scriptlet

402

Working with JSP

and expression tags. JSP specification standardizes some object reference names, which are available for every
JSP page so that any vendor-implemented translators have to take the responsibility of initializing these objects
in the _jspService method.

Features of Implicit Objects

The following are the features of JSP implicit objects:

O JSP implicit objects allow developers to access services and resources provided by the Web container.

O JSP implicit objects are used to generate dynamic content of Web pages.

O JSP implicit objects are termed as implicit, so that you do not have to declare these object explicitly; the JSP
container automatically instantiates these objects.

Q JSP implicit objects are available to all JSP pages, and you can use these objects without importing them into
your JSP page. Since the implicit objects are declared automatically, the user only needs to use a reference
variable associated with a given object. This object can be used to call the methods associated with it.

O JSP implicit objects help in handling the HTML parameters, forward a request to a Web component, and
include the content of a component, log data through the JSP container, control the output stream, and
handle exceptions very easily.

Types of Implicit Objects
During the translation of a JSP page, the JSP engine initiates nine most commonly used JSP implicit objects in the
_jspService() method. These JSP implicit objects are:

Q Request

Q@ Response

a Out

O Page

0 PageContext

0O Application

0 Session

O Config

O Exception

Let’s learn about these objects in detail.
The request Object

Request objects are passed as parameters to the _jspService() method when a client request is made. A request
object is of the javax.serviet.http. HttpServletRequest type. You can use the request objects in a JSP page similar
to using these in Servlets.

The response Object
The response object is used to carry the response of a client request after the _jspService() method is executed.
The response object is of the javax.servlet.http. HttpServletResponse type. .

The out Object
The out implicit object provides access to the servlet’s output stream, This object is a subtype of
javax.serviet jsp.JspWriter. The out object can be used directly in JSP scriptlets to display the text data on the
browser, since JSP expressions are automatically placed in the output stream. In other words, the out object is
used to write the text data.

The page Obyject
The page object refers to the Servlet of the JSP page processing the current request, and is of the javalang.Object
type. It also works as an instance of the generated Servlet in a JSP page. Since it is a variable of type Object, it is
rarely used in a document. It cannot be used directly to call the Servlet methods.

403

Chapter 12

The pageContext Object
The pageContext object represents the context of the current JSP page. It provides a single API to manage the
various scoped attributes. This object is of the javax.servlet.jsp.PageContext type.

The application Object
The application object refers to the entire environment of a Web application to which a JSP page belongs. This
object is of the javax.servlet.ServletContexi type.

The session Object
The session object helps access session data and is of the HttpSession type. It is declared if the value of the
session attribute in a page directive is true. By default, the value of the session attribute is always true. If we

explicitly specify the session attribute to false, the JSP engine does not declare this object. In such a case, if you
try to access the session object, an error is generated.

The config Object
The config object specifies the configuration of the parameters passed to a JSP page. This object is of the
javax.serviet ServletConfig type. To demonstrate the use of the config object within a JSP page, we need to
associate a serviet with a JSP file by using the <jsp-file> element. After associating a Servlet, all the initialization
parameters for the named Servlet are made available to the JSP page by the ServletConfig object.

The exception Object
The exception object is of the java.lang Throwable type and is only available for the JSP pages that act as the

error handlers for other pages. This object is only available to the JSP error pages that have the isErrorPage
attribute set to ‘true’ with page directive.

All objects discussed in this subsection are always available within the scriptlet and expression tags only. These
objects are not applicable to use in declaration tag. However, use the getServletConfig() method if you want to
get the ServletConfig type of object reference in a declaration tag while implementing the jspinit or jspDestroy
methods. Use the getServletContext() method of ServletConfig to get the ServletContext object.

Working with Implicit Objects
Let’s now learn how to use the implicit objects in a JSP page to create a dynamic Web page. Let’s develop a
simple Web application, ImplicitObjects, by using implicit objects, such as request, session, and pageContext.
This application performs three tasks— overriding the jspInit{) method to perform initializations, using
initialization parameter to implement the config object, and accessing the JSP document placed in a private
folder.
This application contains the following Web pages:
O Home.html—Represents the index page of the application
Q requestjsp—Displays the welcome message
O pageContext.jsp—Demonstrates the use of the pageContext implicit object
O otherjsp—Demonstrates the use of other implicit objects such as page, session, out, application and config,
The Home.htm! page of this application consists of a simple form with a text field, Name, and a button, Invoke
JSP. Listing 12.8 shows the code for the Home html page (you can find the Home.html file in the code\Java
EE\ Chapter 12\ ImplicitObjects folder on the CD}:
Listing 12.8: The Home.html File

. ,‘u‘h "

Working with JSP

When a user clicks the Invoke JSP button on the Home.htmi page, the next page, request.jsp page, is displayed.
The request.jsp page displays a greeting message followed by the user name entered on the Home.html page. It
then displays request details, such as type of request, its URI, and request protocol, in the tabular form. These
request details are retrieved using the request implicit object’s methods, such as getMethod (), getRequestURI{),
getProtocol(), and getHeader(). Listing 12.9 shows the code for the request.jsp page (you can find the request.jsp
file in the code\Java EE\ Chapter 12\ ImplicitObjects folder on the CD):
Listing 12.9: The request]sp Flle

' <htm1> B

<h£aﬂ><t1t1e>- P T
- CHEing IMpTE itﬂobjects P

</t1t1e><7haad>

<body> : : '
- Helln, <h><%=request getParameter(“name")%>
4br/>

After submitting the form on the request.jsp page, the control is transferred to the pageContext.jsp page. The
pageContext.jsp page uses the pageContext implicit object to forward a request to another JSP page, other.jsp.
Listing 12.10 shows the pageContextjsp page (you can find the pageContextjsp file in the code\Java
EE\ Chapter 12\ ImplicitObjects folder on the CD):

Listing 12.10: The pageContext isp File

Chapter 12

In the pageContext JSP page, the request is forwarded to the other JSP page. The other.jsp page shows the use of
page, session, out, config, and application implicit objects. This page first overrides the jsplnit function, which
retrieves the initalization parameter of the otherjsp page from the web.xml file. The same initialization
parameter value is fetched by calling the getinitParameter() method of the config implicit object
{condig.getInitParameter(“count™)). In the other.jsp page, we use the page implicit object’s log method to log a
message, anothermessage ({{(HttpServiet)page).log(“another rmessage™);) . The session implicit object is used
to get the value of the sessionVar attribute, which shows the number of active sessions in the request.jsp page
(-.getAttribute("sessionVar”)). The application implicit object is used to retrieve the value of the context
parameter, paraml, set in web.xml. We use the application.getInitParameter(“param1”) method to retrieve the
value of the param1 parameter in this JSP page. Listing 12.11 shows the code for the other.jsp page (you can find
the other jsp file in the code\Java EE\ Chapter 12\ ImplicitObjects folder on the CD):

Listing 12.11: The other.jsp File
<html><body>
<%!int count;- R
S public void-jspImit() 0 i
- servlerConfig sc=getservietconfig();
. count=Integer . parseInt(sc.getInitParame
System.out.printin("In jsprait™); -
. Count value without using

"‘(’._pa am1")+"</h> <br

out .'p‘ri ntin("Count’ valde retriav

“object:" +"4nbsp; "+cont

% s
Sy bodys < fhtmt> SO ST . : L
The webxml file initializes an application level parameter, paraml, with the value param]l. In the
ImplicitObjects Web application, we have configured the otherjsp page in web.xmi, (although it is not
mandatory to declare JSP page in web.xml, as described earlier}. However, the other.jsp page has been declared
in web.xml in our case due to the following reasons:

O Initialization parameter ‘count” for the other.jsp page has been configured in web.xm|.
O The otherjsp page has been placed into a private folder (jsppages) to avoid direct access to this JSP page.
The other jsp page is configured using the <jsp-file> nested tag of the <servlet> tag. The servlet name specified
in the <servlet-name> tag is ‘myjsp’, which is mapped to the URI for accessing this page.
Listing 12.12 shows the code for the web.xml file of the ImplicitObjects application (you can find the web.xml file
in the code\ Java EE\ Chapter 12\ ImplicitObjects\ WEB-INF folder on the CD):
Listing 12.12: The web.xm!l File
- <?xml version="1.0" encodings"UTF-87?
<yeb-app versian="2.5" ins«"http;
xm"!l_jls:xsi:"http.:/!M;.wS: ; %

- xs1:schematgcationa"h
http://java. sun. com/
<context-param - -

“<param-namesparanlc/param-nanes

406

Working with JSP

er</url-patterh>

To run this application effectively, you need to make a new Web Project, séy ImplicitObjects. Place all files, such
as Home.html, pageContextjsp, web.xml and so on, under the directory structure of ImplicitObjects. The
directory structure of the described Web application is shown in Figure 12.8:

Figure 12.8: Showing Directory Structure of the ImplicitObjects Application

Now, deploy the ImplicitObjects folder on the Tomcat server. Browse the application using the URL
http://localhost:9090/ImplicitObjects/Home . html, Figure 12.9 displays the home page of this

application:

T @ it o R R T

Figure 12.9: Displaying the Qutput of Home.html
When a user clicks the Invoke JSP button, the request.jsp page is displayed, as shown in Figure 12.10:

e O ephObvgeiy, T T il
Toquen :
HITP LI
Moaad] 0 feonpble, MSTE 8.3 Wandows N1 6 8, Tadet'4.0. SLCCL NET CLR 2650727, NET CLRE
3511020 NETCLR 2 5 30729: IkoPath. 2, NET C1R 3 0 30° 9. Officel eComecir £ 4. OlicelivePiich 1 3)
Waald 358 ik ¢ soe mve of remaiming Raplick objects?
- = Na

Figure 12.10: Displaying the Result of the request.jsp Page

Chapter 12

Figure 12,10 shows all request details, such as request type, request URI, and request protocols, in the form of a
table,

When a user selects the Yes radio button and clicks the Submit button, the other.jsp page is displayed, as shown
in Figure 12.11:

e N
bl i
e o
Fue (R vew Fwortes Took belp i
o Favortes [e L e

tocalhos ki

! Conam vakse without wsing conllg anplict object 10

{ Vake of sesuoa’t'a s 8

| Server name and version usiag config implicil objett Apacke Tomcat'é.0.1%

| Value of context paramaser param] get using appcaton aiphcs object param]
1 Count vabie errieved using coabg snpkce object §0

oone S e pred Ve O % -"“i;lﬁ-x"v”..

Figure 12.11: Displaying the Use of Implicit Objects.
Figure 12.11 shows the use of the implicit objects in an application. Figure 12.11 also shows the values of the
implicit objects that are implicitly being used by the application. When the user selects any of the radio buttons

shown in Figure 12,10 and clicks the Submit button, the pageContext.jsp page is invoked to display the values of
the implicit objects used in the application.

Exploring Directive Tags
Directive tags are used to give directions used by the JSP translator during the translation stage of the JSP life-

cycle. These tags are used to set global values, such as class declarations, methods to be implemented, and
output content type.

Types of Directive Tags

According to the JSP specifications, three standard directive tags are available with all JSP compliant containers.
These directive tags are:

0O page
0 include
0 taglib

Let’s discuss each of these directives in detail.

The Page Directive Tag
The page directive tag holds the instructions used by the translator during the translation stage of the JSP
lifecycle, These instructions affect the various properties associated with the whole ISP page. You can use page
directive multiple times in a JSP page. The page directive used on any part of the JSP page is automatically
applied to the entire translation unit. However, it is often good programming style to place the page directive at
the starting of the JSP page. The syntax of the page directive is as follows:
<M@page attributes % - ln T T RN e
The XML based syntax for the page directive is as follows:
<jsprdirectiveipage artributes/> . 1.0 e SR)
There are total 11 attributes that can be used in the page directive tag. Table 12.1 lists these attributes:

Table 12.1: Attributes of page directive

i

language Takes the scripting language as the value to be used in scripting tags. The default value is Java

import Takes comma separated list of Java classes as the value
extends ! Takes a complete qualified class name extended by the Servlet equivalent class written by the
¢ translator of the current JSP page

e B A AT I 1A AR g g R SRt LT R

408

Working with JSP

Tab!e 12 1: Attrlbutes of page dtrectwe

P

buffer : Takes the buffer size in kilobytes, for example none, 8kb, 16kb, 32kb, and 64kb. The default value is
. 8kb
autoFlush _ Specifies whether the output has to be flushed automatically when the buffer ‘is full. If this

attribute is set to true, it automatically flushes the buffer as soon as the buffer is full. If this
attribute is set to false, an exception is raised when buffer overflows. The default value of this
atmbute is true

isThreadSafe : Takes t'rue or false as 1ts value, the default value is true ThlS at‘trlbute spec1f1es whether or not a
JSF page is thread safe. That is, whether or not the instance of the servlet equivalent class of the JSP
page is capable of handling simultanecus requests. If this attribute is set to false, only one thread
can use the service provided by one object. If the value of this attribute is true, simultaneous
requests can be handied by t}us page

T e et i i B o RS L Bt e

errorPage : Ta.kes the URL path of the page to thch a request has to be dispatched when an exception is
raised in the current page

isErrorPage (Takes true or fa]se as lts value, the default value is false Thls atmbute speleles whether or not the
. current page is an error page. Note that if this attribute is set to true, an additional implicit object,
exception, is available for the current JSP page

P R S S e S S Y S e 0 T A Y e gk e

contentType © Takes the response content MIME type, a.nd optionaily, Character encoding. The default value is
text/html
Session * Takes true or false, which indicates whether or not the session is required; the default value is friie.

If this attribute is set to false the JSP page cannot use the session 1mphc1t ob]ect

lnfo Takes a strmg, Whlch can be retrleved by usmg the ge!ServletInfo() method

. Spectﬂes the encodmg type to be used by the Web container to compile a JSP page. Some of the
encodlng types are ISO 8859 1 and UTF-S

A R A e B, wr B e BB | Rk SO © e T A e R T R e e

pageEncodmg

The JSP page, as described earlier, can contain any number of page directive tags. However, except the import
tag, none of the other tags are allowed to be specified more than once.

The Include Directive Tag

The include directive tag is used to merge the contents of two or more files during the translation stage of the [SP
lifecycle. The include directive adds the text of the included file to the JSP page, without any processing or
modification. The included file can be static or dynamic. If the included file is dynamic, its JSP elements are
translated and included. In this case, if there are any changes in the included page after the included JSP page is
translated, the changes are not applied until the included JSP page is translated once again.
The syntax of the include directive is as follows:

A@include file=" file path” %
The XML based syntax for include directive is as follows:

<jsp:directive. include file=" File path- /> : : : .
The following code snippet shows the implementation of the include dlrectlve for merging the Testjsp and
Testl.html files:

<@include files"/Test.jsp™ %>

Kfinclude file="/Testl, htmi” X» :
Note that the behavior of the include dlrechve wnth respect te the recompllahon of the mcluded page, l_f any
changes are done to it, depends on the Web container. This means that if the included page is changed, some
contaitiers recognize and apply the changes to the JSP page, while others do not.

409

Chapter 12

The Taglib Directive Tag
The taglib directive tag is used to declare a custom tag library in a JSP page so that the tags related to that
custom tag library can be used in the same JSP page. The syntax of taglib directive is as follows:
<X@taghib urin"-URI™ prefix=" onique_prefix * %o o oo e e
We do not have any special XML equivalent element for this tag since this declaration is done by using the XML
namespace syntax,

Working with JSP Directive Tags
JSP directives are used in a JSP page to add functionality to the JSP page. Let's create the directiveTags
application using the JSP directives. This application contains the following pages:
O Loginhtml — Accepts user details and redirects the user to the required JSP page.
O LoginPracess.jsp —Connects to a database to process the user request.
O MyError.jsp — Represents the JSP page that is called when an error or exception is raised.

In this application, we use the MySQL 5.0 database to access the related tables in the application. Therefore, you
need to create the database table to work with the application before creating these JSP pages. The code to create
the table is as follows:

“dnsert into userdetails.
Let’s now create these pages.
Listing 12.13 shows the Login html page, which is the home page of the application (you can find the Login.htmi
file in the code\ Java EE\ Chapter 12\ directiveTags folder on the CD):
Listing 12.13: The Login.html File
o <htmls <bodisspres .

" c>passworde/bs. | ¢ <ingut tyi
p © <input type="submit": value
o O ‘¢fprﬁb<fbbd§$ <fhtmls

The Login html page allows the user to enter a user name and password, which are stored in a database.

After entering the user name and password, the LoginProcess.jsp page is called to handle the request. Listing
12.14 shows the code for the LoginProcess.jsp page {you can find the LoginProcess.jsp file in the code\Java
EE\Chapter 12\ directiveTags folder on the CDY:

Listing 12.14: The LoginProcess.jsp File

. erre

G and passs\™s |
e R b rsonexk QX

410

Working with JSP

equest -.'get}.‘a‘fmm-r{'_'-unm‘-‘j)_ﬁ_ﬁ ‘are not

The LoginProcess.jsp page shows the use of the JSP page directive, which imports the java.sql package into the
LoginProcess JSP page. The java.sql package helps the LoginProcess.jsp JSP page to access the database that
stores user information. After the request is submitted by the user, the LoginProcess.jsp page is used to generate
the appropriate response for each request made.

The LoginProcessjsp page also includes another page, named MyErrorjsp, which is used to handle any
exception that may occur in the JSP page. Any exception in the LoginProcessjsp page is forwarded to the
MyError jsp. Listing 12.15 shows the code for the MyErrorjsp page (you can find the MyError jsp file in the
code'\Java EE\ Chapter 12\ directiveTags folder on the CD):

Listi The

MyError jsp File

o ilnbsp;
</ body> s /hEals : o o :
The files used in this application need to be placed properly in a separate directory named directiveTags. Since
the application imports the java.sql package, you need to include the mysql-connector{java-5.0.4-bin jar files in
the lib directory of the application. This is an executable jar file used to access a database within a JSP page. In
this case, we have included mysql-connector-java-5.0.4-binjar file in the directory since we are using the MySQL
5.0 database for the application. Figure 12.12 shows the directory structure of the described application:

¢ Bf 03 derectiveTags

PR b

- gi mysgl-connector -java-5.0.4-bin.jar
D@ LogrProcess jsp

o MyEmer g

oo web.aa

Figure 12.12: Directory Structure for the directiveTags Application

The application needs to be deployed on the Web server to be accessed by the users. Copy the directiveTags
folder into the webapps folder of the Tomcat installation.

EN

After placing the files as per the directory structure described above, you can access the application by using the
URL http://lecalhost:9090/directiveTags/Login.html. Figure 12.13 shows the Login.html page as
it appears on the Web browser:

411

Chapter 12

Usez Name :

Fasswora

|
1
i
} Ulogih .
i‘ gl
i
i

o B T & e e Cim BRI T

Figure 12.13: Displaying the Cutput of Login.html|

Enter the username and password on the Login.html page. After entering the user name and password, the JSP
engine checks for the availability of the user name and the password in the specified database. If the entries are
valid, you are directed to the LoginProcess.jsp page, as shown in Figure 12.14:

Fle Eor View Feonle Yook Hep
Te Favorites TR btngs, ’

i
T This s a Home Page

{ Weicome, Suchita

- Done @ Intemel | Brotectest Mode On ‘e - Klw% -

Figure 12.14: Displaying the Output of LoginProcess.jsp
Figure 1214 shows the output for the successful login in the Login.htm! page. The database is called each time a

user enters the values for the user name and password fields. If the entries are not available in the database, the
user is redirected to another page, as shown in Figure 12.15:

Dgar Kegx -

Bore ’ ’ B N AL ST

Figure 12.15: Displaying Output of LoginProcess.jsp for an Invalid Login

Now, to test the errorPage and isErrorPage functionalities, drop the table from the database, by using the
following command:

drop table userdetails;
If you make a request to the LoginProcessjsp by clicking the Login button, a SQLException is raised in the
LoginProcess page.
After discussing the JSP basic tags and implicit objects, let’s now discuss how to use JavaBeans and action tags
inJSP.

Using JavaBeans and Action Tags in JSP

Use of JavaBeans with JSP has made the work of developers easy because developers do not need to handle long
Java syntax within a JSP page. We start this chapter by introducing JavaBeans. In addition, we try to analyze
why JavaBeans are required when we can work with JSP. We start the discussion by describing the advantages

412

Working with JSP

of using JavaBeans. The components and properties of JavaBeans are described next. We also examine how
JavaBeans can be used with JSP. Finally, we learn about JSP Action tags. Let’s start discussing about JavaBean.

What is JavaBean?

JavaBeans are reusable software components that separate the business logic from the presentation logic. In
general, JavaBeans are simple Java classes that foliow certain specifications to develop dynamic content.
JavaBeans are required to create effective and dynamic Web pages by providing the benefit of using separate
Java classes instead of embedding large amount of Java code directly in a JSP page. These separate JavaBean
classes are easier to write, compile, test, debug, and reuse. JavaBean uses getter and setter methods to invoke
various methods explicitly to use their functionality with JSP pages.

You can create reusable and platform-independent JavaBean components with the JavaBeans APl JavaBean
components are also known as beans. JavaBeans can be created or manipulated by using JavaBeans-compliant
application builder tools such as NetBeans IDE. The JavaBeans-compliant application builder tools automatically
discover information about the classes, based on JavaBeans specifications, and can create and manipulate these
classes.

Advantages of using JavaBeans
JavaBeans have many advantages over scriptiets and JSP expressions. Some advantages of using JavaBeans are
as follows:

O With the use of JavaBeans, users can manage presentation code and business logic separately. This feature
of JavaBeans is more advantageous in big organizations that have separate Web and Java development
teams. Both the presentation logic and business logic are developed separately, and JavaBeans ensure
proper communication between them.

O Using JavaBeans with JSP has made object sharing between multiple Web pages simple.
O Using JavaBeans with JSP has simplified the process of request and response handling.

These are the advantages of using JavaBeans. Now, we learn about using the JavaBeans component with JSP
action tags.

A JavaBean component refers to any Java class that follows certain design conventions.

Action Tags
Action tags have been introduced in JSP 1.1, and some additional tags have been added in the JSP 1.2 and 2.0
specifications. These set of tags allow us to include some basic actions, such as inserting some other page
resources, forwarding the request to another page, creating or locating the JavaBean instances, and setting and
retrieving bean properties, in J5P pages.
The action tags are specific to a JSP page. When the JSP container encounters an action tag while converting a JSP
page into a servlet, it generates the Java code that corresponds to the required predefined task. For example
when it comes across the ‘Iinclude’ action tag:

<jsp:include page="myjsp.isp" flush="true" />

In the preceding code snippet, the jsp:include action tag allows to include the myjsp.jsp page.
Some important action tags available in JSP are as follows:

<jsp:include>

<jsp:forward>

<jsp:param>

<jsp:useBean>

<jsp:setProperty>

<jsp:getProperty>

oocooRpCGCQ

<jsp:plugin>

413

Chapter 12

<jsp:params>

<jsp:fallback>

<jsprattribute>

<jsp:body>

<jsp:element>

<jsp:text>

Let’s now describe these action tags in detail.

Describing the Include Tag

The include action tag allows a static or dynamic resource such as HTML or JSP page, specified by a URL, to be
included in the current JSP while processing a request. If the included resource is static, its content is included in
the calling JSP page. If the resource is dynamic, it acts on a request and sends back a result, which is included in
the JSP page. For example, if the resource is another JSP page, the output content generated by the second JSP
page is included in the first JSP page. The following code snippet shows the syntax of the include action tagina
ISP page:

dD0D0DDO0OO

if the included resource is dynamic, we can uss the Jsp:param tag to pass the name and value of a parameter to the
resource, 8s you can see in the previous code snippet, You leamn about jsp:param later in this chapter.

The include action tag has certain attributes, which are used to accept values for the specified JSP page. The
attributes specific to the include tag are as follows: '

O page—Takes a relative URL, which locates the resource to be included in the JSP page. This allows us to
give an expression that evaluates to a String equivalent to the relative URL that locates the resource, We can
specify the relative URL directly or in an expression within a page attribute. The following syntax shows the
use of the page attribute in a JSP page:

* <jsprinclude page=*/Header.htmi"/>

* <jspiinclude page=“<%=mypath%>*/>
The relative URL cannot contain a protocol name, port number, or domain name. The relative URL starts
with the */* (forward slash) character, specifying that the URL is taken relative to the context path.

Q flush—Takes true or false, which indicates whether or not the buffer needs to be flushed before including
the resource. If the value is true, the buffer is flushed before including the resource. The default value of this
attribute is false. After the include action is completed, the JSP container continues to process the rest of the
JSP page.

You might be thinking how is the include tag different from the include directive tag described in the Working

with JSP Basic Tags and Implicit Objects section. Now, let’s discuss the difference between the ‘include’ directive

tag and the ‘include’ action tag,

Difference Between Include Directive and include Action Tags
The ‘include’ directive tag inserts the given Page and includes the content in the generated Serviet page during
the franslation phase of the JSP lifecycle. In general, the ‘include’ directive is used to include files, such as
- HIML, JSP, XML, or a simple .txt file, into a ISP page statically. The file attribute is the only mandatory attribute
available in the include directive tag and is used to refer to the file to be included. The following code snippet
shows the use of the JSP include directive tag in a JSP file:

In the preceding code snippet, menu jsp is the file included in the current JSP pége. The content of the menu. jsp
page is included in the current JSP page during the translation stage. The include directive tag does not allow
you to use the expression for giving the URL path, for including the resource in the JSP page.

a14

Working with JSP

The ‘include’ action tag is used to include the response generated by executing the specified JSP page or Serviet.
The response is included during the request processing phase, when the page is requested by the user. The
specified JSP page is included in request handling phase of the included JSP page lifecycle. The following code
snippet shows the use of the include action tag ina]SP f:le

<jsprinclulle pagee “mant Fep7s: i g SLinptn i : i
In the preceding code snippet, the output of menu.]sp needs to be mcluded in the current page The respectlve
logic for include is written into the Servlet equivalent generated for the current JSP page.

Unlike the include directive tag, the include action tag accepts expressions. That is, with the include action tag,
we can decide the page to be included at runtime, whereas it is not possible with the include directive tag,.

Describing the Forward Tag

The jsp:forward tag forwards a JSP request to another resource, which can be either static or dynamic. If the
resource is dynamic, we can use a jsp:param tag to pass the name and value of the parameter to the resource. We
use the page directive with the buffer="none” parameter to specify that the output of the JSP page should not be
buffered.

If the output stream is not buffered, and some output has been written to it, a <jsp:forward> action throws a
java.illegalStateException. The forward action in a JSP page works similar to the forward{) method of
Requesthsapatcher The followmg code snippet shows the use of the jsp:forward action in a JSP page:

The jsp: forward action takes a page attribute to specifv the page to which the current request is to be forwarded.
The page attribute takes the relative URL that locates the resource to which the request has to be forwarded. This
allows us to give an expression that evaluates to a String equivalent to the relative URL that locates the resource.
We can specify the relative URL directly or by using an expression. The following code snippet shows the use of
the page attribute in the jsp:forward action:

THe giv.en. URL cannot contain a froﬁ)col name, port number, or domain name. If the given URL starts with the
/ character, the URL is taken relative to the context path, if not relative to the JSP page. After the forward action
is completed, the JSP container does not continue processing the rest of the JSP page.

Describing the Param Tag

The jsp:param tag aliows us to pass a name and value pair as parameter to a dynamic resource, while including

it in a JSP page or forwarding a request from a JSP page to another JSP page. The <jsp:param> tag can be even

used to pass parameters to an applet configured in JSP page by using the jsp:plugin tag. The following syntax

shows the use of the param tag in a JSP page: '
<jspiparam attributes /> :

We can use more than one jsp:param tags if we want to pass more than one parameter. The param action tag

contains two attributes, name and value, which are discussed next.

The name Aftribute
The name attribute specifies the parameter name and takes a case-sensitive literal string. The parameter name
should be unique, that is, it should be different for each parameter.

The value Altribute
The value attribute specifies the parameter value and takes either a case-sensitive literal String or an expression
that is evaluated in the request handling stage of the JSP lifecycle. The following snippet shows the use of the JSP
param and mc]ude actxons, along with the attnbutes of jsp:param actlon

415

Chapter 12

Let’s create the actiontags_ex! application to demonstrate the functionality of the discussed action tags in a JSP
page. The Home html page is used to create the user interface where the user needs to enter the values for the
specified fields. Listing 12.16 shows the Home.html page (you can find the Home.html file in the code\Java
EE\ Chapter 12\ actiontags_ex1 folder on the CD):

Llstmg 12.16: The Home.html Flle

v xlitml> <body> <pres
<form action="FrontJsp:isp"> A :

gperand. 1. : <input. type—"text name=“f1e1d1"/> _

0perand 2 : <input fype="text" name=" ﬁe'ld2"/> .

<input type="submit” name="submit" valie="add"/> '

<input type="submit" name="submit” value="Sub"/>
</form> </pre> </body></html>
When you execute Listing 12.16, the Home.html page is displayed, Wthh provndes options to enter the values of
certain fields. After entering the values for the required fields in the Home.html page, the control is transferred
to the Front]spjsp. Let’s now create the Frontlsp.jsp page, as shown in Listing 1217 (you can find the
Front]SP.jsp file in the code\Java EE\ Chapter 12\ actiontags_ex1 folder on the CD):

Listing 12.17: The Front]SP.jsp File
déﬂpage -8 rro-rPage-,:-'-‘/ Home ¢ hj__:m'!.='u_'._%>

BRS¢ (submit equak("Adﬂ"))
SR = SO o
‘...<;sp.-.fama-fd>page= AAdISpL AT e o e

" Sub" }) { .

. } e1se 1f subm1t eq
' <jsp forward page=“/5ub:rsp 3 p_“/> :
e

! "} ISETE {

<Jsp forward page—"/Home htm1"/>
<K} %
The Front]SPjsp page provides two buttons, Add and Subtract. From the FrontJSP.jsp, the control can be
transferred to the AddJsp.jsp or SubJsp.jsp page, depending on the button that a user clicks. The jsp:forward
action is used to forward the action to the respective pages. Listing 12.18 shows the code for AddJsp.jsp (you can
find the AddJsp jsp file in the code\ Java EE\ Chapter 12\ actiontags_ex1 folder on the CD):

Llshng 12, 18 The Add]sp jsp File
int. fl=Integer.parseInt{requast: getparameter{"f1e1d1“))
int f2=Integer.parseInt(request.getParameter("fiald2"));
i int resul t=f1+f2

<jsp: forward page=" /Result 35p S

<jsp:param name="result" vai ue=“<%.resu3 t%>" /> </JS|J forward>
The AddJsp.jsp is called if the user clicks the Add button. The Add]sp.jsp page is used to add the values entered
by the user. This page then transfers the control to the Result.jsp page to view the result of addition.

Stmilarly, if the user clicks the Sub button, the SubJsp.jsp page is displayed. Listing 12.19 shows the code for the
SubJsp.jsp page of the application (you can find the SubJspjsp file in the code\Java EE\Chapter
12\ actiontags_ex1 folder on the CD):

416

Working with JSP

Listing 12.19: Sub]sp.jsp
int fl=Integer.parseInt(request.getParameter("fieldl"));
int f2=Integer.parseint{request,getParamever{’field2"3); .~ -
int result=fl-f2z; - . Tl
<jsp:forward page="/Result.jsp"> . o

<jsp:param name="result" value="<¥=result®%"/> .

</jsp:forward> ’ ‘

The Sublsp.jsp page also transfers the control to the Resultjsp page. Listing 12.20 shows the Result.jsp page (you
can find the Resultjsp file in the code\Java EE\ Chapter 12\ actiontags. ex1 folder on the CD):

Listing 12.20: The Result.jsp File
string result=request.getParameter("result");
‘string submiterequest.getParameter("submit");
<html><body><center>
if Csubmitiequals("add™)){
Result of Add ; dé=resultds
< SR
} else {
Result of Sub ¥ <F=resultd>
AT : T
</center> - . . LT
. <jsp:include -page="/home html
</bodys></html> ' R I S PRI ST Y SIS R R
The pages designed above must be mapped in the web.xml file to access them in the browser. Listing 12.21
shows the web.xml file associated with the preceding application (you can find the web.xm file in the code\Java
EE\Chapter 12\ actiontags_ex1\ WEB-INF folder on the CD):

Listing 12.21: The web.xml File
. <?xml version="1.0: encod
<web-app versions
_xminsixsi="htrpi/f
- xsi:schematocation
http://java. sun.com/xml
<welcome-Files-¥ist> -~ -.©
<weTcome-#ile>Home -html </welcome-file>.
</welcome-files+Tist> L :
</web-app> - - . .
All the specified files are to be placed under a common directory named actiontags _ex1. Place this directory in
the <tomcat-home>/webapps directory and start the Tomcat server. Figure 12.16 shows the directory structure
of the actiontags_ex1 folder:

R

¥

vage/web-app_.

& £ sctiontags_exi
B L3 WESINF
0 dasses
Ll B
Adddep. jop
FrontJ5P.jsp
Home himl
Result.jsp
Subisp.jsp

Figure 12.16: Showing Directory Structure for the actiontags_ex1 Application

e

417

Chapter 12

Now, browse the application using the URL, http://lccalhost: 9090 /actiontags exl/Home.html, as

shown in Figure 12.17. From this view, you can add or subtract any two numbers. Enter some numbers, as
shown in Figure 12.17:

N s OO S e Rl
Figure 12.17: Showing Output of the Home.html Page
If the user enters 20 and 30 as the values for the Operand 1 and Operand 2 fields respectively, (Figure 12.17) and
clicks the Add button, the control is transferred to the Add]Jsp.jsp page. Figure 12.18 shows the Add]spjsp page,
as it appears after the user clicks the Add button;

Resat of Add- 30 s
Operand £ :?
Dperand 2 é'
figoti
o4

Figure 12.18: Displaying Result.jsp forwarded from Adesp.jsﬁ.
Figure 1218 shows the result of clicking the Add button on the Home.html page.

Similarly, if the user clicks the Sub button on the Home. html page after entering 60 and 30 as the values of

Operand 1 and Operand 2, the control is transferred to the Sublsp.jsp page. Figure 12.19 shows the result of
clicking the Sub button:

'..;__.u-..Au,,‘.....____....‘,,,,,,,.I.._..é.....AE,,,,,....I.I_.D.n_v..u‘.,j,.?;.;,_i;ﬁ%.,,‘,‘.

Figure 12.19: Displaying Result.jsp forwarded from SubJsp.jip.
Figure 12.19 shows the Result,jsp page when the user clicks the Sub button.

Describing the useBean Tag

To separate logic from presentation, it is often a good idea to encapsulate logic in a Java object (a JavaBean),
and then instantiate and use this object within e JSP page. The <jsp:useBean>, <jspisetProperty>, and
<jsp:getProperty> tags assist with this task.

The <jsp:useBean> action tag is used to instantiate a JavaBean, or to locate an existing bean instance, and assign
it to a variable name (or id). We can also specify the lifetime of the object by giving it a specific scope, such as
application scope. The <jsp:useBean> action tag ensures that the object is available, with the specified id, in the
appropriate scope as specified by the tag. The object can then be referenced using its associated id from within

418

Working with JSP

the JSP page, or even from within other JSP pages, depending upon the scope of the JavaBean. The syntax of the
<jsp-useBean> action tag is as follows:

The attributes add extra characteristics to a tag, irrespective of its basic functionality. For example, the scope
attribute of the jsp:useBean action tag makes a Java bean instance available in different scopes. Some attributes
specific to the useBean tag are:

O id—Represents the variable name assigned to the id attribute of the jsp:useBean action tag. The id attribute
is used to locate an existing bean instance in the appropriate scope specified in the jsp:useBean action tag.
The id attribute is case sensitive and must follow the naming conventions used to define Java variables,

QO Scope~Represents the scope in which the bean instance has to be located or created. Scopes can be page,
request, session, and application. The default scope is page. All the scopes are defined as follows:

* page scope—Indicates that the bean can be used where the <jsp:useBean> action tag is used within
the JSP page, until the page sends a response back to the client or forwards a request to another
resource.)

» request scope—Indicates that the bean can be used from any JSP page that is processing the same
request, until a JSP page sends a response to the client.

e session scope—Indicates that the bean can be used from any JSP page invoked in the same session as
the JSP page that created the bean. The bean exists throughout the entire session, and can be accessed
by any page that shares the session. Note that the page in which you create the bean must have a page
directive with session="true”.

* application Scope—Indicates that the bean can be used from any JSP page in the same application as
the JSP page that created the bean. The bean exists throughout an entire Web application, and can be
accessed by any page in the application.

O class—Accepts the qualified class name to create a bean instance if the bean instance is not found in the
given scope. The class name given in this attribute shouid have a no-argument constructor and shoutd not
be an abstract class. This is because the JSP container uses the new keyword and no-argument constructor to
create a bean instance.

Q beanName— Accepts a qualified class name or an expression that resolves to a qualified class name or
serialized template. The JSP container uses instantiate method of the java.beans.Beans class to instantiate the
bean. The instantiate methed of the java.beans.Beans class instantiates the given bean in the following
approach: '

e First it checks whether the given name represents the serialized template, if found, then it reads the
serialized template by using the class loader to instantiates the bean, the serialized form will be
located in the file with a name packagename.classname.ser.

s If the given name does not represent a serialized template, then it creates an instance by using the no-
argument constructor.

O type—Accepts a qualified class or interface name, which can be the class name given in the class or
beanName attribute or its super type. This attribute can be used with or without class or beanName. If this
attribute is used with the class or beanName attribute, the bean located or created will be taken into the
reference variable of the type as given under this attribute. The variable name will be as specified in the id
attribute. If this attribute is used without the class or beanName attribute, the JSP container only tries to
locate the Bean but does not instantiate the Bean. If the Bean is not found, the JSP container throws
InstantiationException,

Using the <jsp.useBean> Tag Attributes
The <jsp:useBean> tag attributes can be used in different combinations, as shown in Listing 12.22:
Listing 12.22: Various ways of using <jsp:useBean> tag

419

Chapter 12

<jsp:useBean. id="mybean” class="com.kogent, Jspex‘uysean“ scope="session”/»
<jsp:useBean id="mybean" beanName="com.kogent. Jspek. MyBean"{> Lo .
<jsp:useBean id="mybean” class="com, kogent., Jspex MyBean” scop

type="com.kogent .jspex, MyBeanIntf”/> - :

<jsp¢useaean jd="mybean" ‘beanName="com. kogent Jspex HyB
type="com. kogent jspex My8eantﬂtf" P el =
<jsp:useBean id="mybean” scope="session” type-"com kogent Jspex Myaeanlntf“[>
If you use the <jsp:useBean> action tag in a JSP page, you must include the logic into the Java code generated for
the JSP page. The generated logic performs the following operations:

1. Declares an object reference variable with the given name (that is, the value of the id attribute) of the type
specified in the class or beanName attribute. If the type attribute is already specified, the reference variable
should be of the type specified in the type attribute.

2. Determines whether or not the bean instance is available in the given scope with the given name. If the bean
is found in the given scope, the reference of the bean instance is stored in the reference variable, as
described in previous step.

3. If the bean canmot be located in the given scope, the <jsp:useBean> action tag instantiates the class specified
in the class or beanName attribute and then stores a reference of that class in the new reference variable.
Thereafter, the <jsp:useBean> action tag executes its body content if it has body content.

4. If the bean cannot be located in the given scope, the class or beanName attribute is not assigned to the class
or bean reference, and only type attribute is used, an InstantiationException is thrown.

Generating Serviels with the <fsp:useBean> Tag
Let’s try to evaluate how a Servlet is created after a JSP page using some combinations of the <jsp:useBean> tag
is compiled. For simplicity, we take some combinations of the <jsp:useBean> tag specified in Listing 12.23.
Suppose your JSP page contains the following <jsp:useBean> tag:

“n<ispruseBean:id="regbetrails”: classslcom.kpgent. jspex.usacDetails’ scopesTsession" /3

Let’s look at how this <jsp:useBean> tag is processed by the Web container. Listing 12.23 shows the Servlet code
generated by the Tomcat Web container:
Llstmg 12.23: Generated Servlet code

wpublic W‘id_jspserviﬁ Cortinin a0 5ot I R O e e e

The implementaticn logic to create the Servlet may be different for other servers since most of the servers use
built-in utility classes to perform these operations.
Let’s look at another example next. Now suppose that your JSP page contains the following <jsp:useBean>
action tag:

<jsp:useBean id="regbDetails” type="com.kogent.jspex.Userpetails” ;scope="8e55361n"/
Notice that Listing 12.23 generates an exception if the specified instance type is not found. In our second
example, the type attribute is specified with the <jsp:useBean> tag without using the class attribute. Listing 12.24
shows the Servlet code generated with the second example of the <jspiuseBean> tag:

420

Working with JSP

Listing 12.24: Generated Servlet Code
pubYic void _jspservice(
Httpsérvietrequest request,
HttpServ“lgtEesponse response)
throws. java:i '10Except‘lon Serv‘ietExcepmon {
com.. kogent spex USerDeta115 regDeta11s =-nu11-
“syfichronizdd (session) { '
regbétails = (com. kogent Jspex. userDetaﬂs)
_ispx_page_context.getartribute("regbDetails”
_PageContext . SESSTON, _SCOPE) ;
ff (regDetaﬂs---— L :
: throw hew java.lang. Instanti atmnException(
"hean regbetails not found within scope™);

1/7if
}//synchronized -
H :
In Listing 12.23, if the specified class is not found, UserDetails, a new instance of the UserDetails class, is created
and bound to the specified scope. In Listing 12.24, the type attribute is specified and no class attribute has been
provided, so if ‘regDetails’ does not exist in the “session” scope, then Instantiation Exception is thrown.

In this topic, we learned about using the <jsp:useBean> tag. Let’s now learn about the <jsp:setProperty> tag
next.

Describing the setProperty Tag
The <jspsetProperty> action tag sets the value of a property in a bean, using the bean’'s setter methods. Before
using the < jsp:setProperty> action tag; the bean must be instantiated. In addition, the name attribute of the bean
must be the same as the reference variable name of the bean instance. The bean can be instantiated by using the
<jsp:useBean> action tag as explained earlier. In this case, the attribute name of the <jsp:setProperty> action tag
must be the same as the attribute id of <jsp:useBean>. Since both tags work together, these attributes are used to
ensure co-ordination between them. The syntax of the <]Sp setProperty> tag is as follows: '

<jsp:setProperty atrributes/> - -
The <jsp:setProperty> tag contains various attributes, such as:

O name

O property
0 value

0O param

Let us now discuss these attributes in detail.

The name Attribute
The name attribute takes the name of the already existing bean as a reference variable to invoke the setter
method. This attribute must match with the value of the id attribute of <jsp:useBean> to set the properties of a
bean. Consequently, the <jsp:useBean> tag must be declared before the <jsp:setProperty> tag in a JSP page.

The property Attribute
The property attribute of the <jsp:setProperty> tag takes property name that has to be set, and specifies the setter
method that has to be invoked. You can use this attribute in two different ways. The first way is to use **’ with
the value of this attribute. Using “*' with the property attribute matches all the properties of a bean with the
request parameter names. However, if you want to match any specific property of bean, you need to specify the
value of the property attribute with the property name rather than using “**. Consider the following syntax to
use this attribute with ** and with a specific property name:

// syntax to use.property attribute with **’ .
<jspisetProperty name=" name of reference variable " property= W />
/7 Sytitax' to-use: property attribute with specific value

421

Chapter 12

<jsp:setProperty name="name of reference variable’ propertys="propecty name” /> ..
Note that when you use *** with the property attribute, the value and param attributes are not appllcable with
this tag. If you specify a specific property name for this attribute, the value and param attributes are applicable.

The values of the request parameters sent from the client to the server are always of type String. “These values
must be converted into the bean property types when stored in bean properties. If a property has a
PropertyEditor class, as indicated in the JavaBeans specification, the setAsText(String) method is used to convert
the value of the request parameter from String to a bean compatible data type. If the setAsText(String) method
fails to convert the type, it throws an IllegalArgumentException.

The vaiue Attribute
The value attribute takes the value that has to be set to the specified bean property. This attribute accepts the
value as the String type or as an expression that is evaluated at run time. If the value is not of the String type, the
value is converted to a Bean compatible data type.

This attribute should not be used if property=""", becauss it refers fo all properties and we cannot sef all properties using
one value.

The syntax to use the <jsp:setProperty> tag with the value atmbute isas follows

T <jsprsetProperty names": mame b refer fice:
. Property. value as String /> R

or
“JSP SetProperty pame=" ‘name of refer
Property Value as expression %!

ﬂreparam Attribute
When setting bean properties from request parameters, it is not necessary that the bean has the same property
names as the request parameters. The param attribute is used to specify the name of the request parameter
whose value we want to assign to a bean property. If the param value is not specified, it is assumed that the
request parameter and the bean property have the same names.

This attribute must aiso not te be used when property="", because it refers to all properties and we cannot set
requested parameters for all properties using one value.

The syntax to use the param property is as follows:

<jsp:setProperty name="reference variable name” property="property name” param="request
parameter name”/>

Let us see some examples to use the syntax given with attributes of the <jsp: setProperty> action tag, as given

here:

G Tosetall properties in the JavaBean while setting bean propertles from the request ob}ect
<jspisetProperty name="abcbean” ‘proparty="*"/x LI

O To set a specific property in the JavaBean while settmg bean propertles from the request
object:
<jsp:setProperty name="abchean” property="uname" params="uname”/>

O when setting a bean property toavalue, you should specify the value attribute as either a String
or an expression that is evaluated at runtime:

s 8P SELPPOPRITY: mmeu“abcheaﬂ“ ‘property="unane” valuea”deunmexzs"b . . .
You Tlearned about the <jsp:setProperty> action tag in this section. Let's now learn
about the <jsp:getProperty> action tag next.
Describing the getProperty Tag

The <jsp:getProperty> action tag gets the value of a property in a bean by using the bean’s getter methods and
writes the value to the current JspWriter. The syntax to use the <jsp:getProperty> action tag is as follows:

422

Working with JSP

<jsprggtProperty. atrriputess Sn e e v
The <jsp:getProperty> action tag takes two attnbutes name and property, Wthh are descnbed next.

The name Altribute
The name attribute takes the reference variable name on which you want to invoke the getter method. If a bean
is instantiated by using the jsp:useBean action tag, the value assigned to the name attribute should lmatch with
the id attribute value of the jspruseBean action tag. In this case, the <jsp:useBean> action tag must appear before
the <jsp:setProperty> tag in the JSP page.

The property Attribute
The property attribute of the <jsp:getProperty> tag gets the value of a bean property and invokes the getter
method of the bean property. This attribute takes the name of the property as an argument. For example, if the
getUname method needs to be called, the property attribute takes uname, as shown in the followmg smppet'
<jspigetProperty name="mybean” property="uname"”/>
In the above code snippet, the <jsp:getProperty> tag gets the value of the uname property, by using the mybean
instance, and includes this value into the output.

<jsp:getProperty> is not designed to access Enterprise JavaBeans and indexed propertiss.

Plugin
The jsp:plugin action tag provides easy support for including a Java applet or bean in the client Web browser,
using a built-in or downloaded Java plug-in. In the request handling stage of the JSP lifecycle, the jsp:plugin
action tag is replaced by either the <object> or the <embed> tag, depending on the browser version. In general,
the attributes of the jsp:plugin action tag perform the following operations:
O Specify whether the component added in the <object>> tag is a bean or an applet
O Locate the code that needs to be run
0 Position the object in the browser window
O Specify a URL from which to download the plug-in software
0 Pass parameter names and values to the object
The following syntax shows the use of the JSP plugin action tfag in a JSP page:

B #iw*flﬂﬂﬁi ' Jnts
The plugin tag takes some predefined attributes, which are:
O type—Specifies the type of object that needs to be presented to the browser. The object can be an applet or a
JavaBean.

O code—Takes the qualified class name of the object that has to be presented.
O codebase - Takes the base URL where the specified class can be located. This attribute is optional.
O name—Specifies the name of the instance of the bean or applet, which helps the applets or beans called by

the same JSP page to communicate with each other.

Q archive--Specifies a comma-separated list of pathnames, which locate archive files that are preloaded with
a class loader located in the directory named ‘codebase’. The archive files are loaded securely, often over a
network, and typically improve the applet’s performance. This attribute is similar to the archive attribute of
the HTML applet tag.

O width—Specifies the initial width, in pixels, of the image the applet or bean displays.
Q height—Specifies the initial height, in pixels, of the image the applet or bean displays.
O align—Specifies the position of the applet. The values that the align attribute can take are bottom, top,

middle, left, and right. The default value is bottom.

423

Chapter 12

O hspace—Specifies the amount of space, in pixels, to the left and right of the applet or bean displayed by the
browser. The value must be a nonzero number.

O vspace—Specifies the amount of space, in pixels, to the bottom and top of the applet or bean. The value
must be a nonzero number,

O jreversion—Specifies the version of the Java Runtime Environment (JRE) that the corresponding applet or
bean requires. The default value is 1.2.

O nspluginurl--Specifies the URL where the client can download the JRE plug-in for Netscape Navigator.
The value of this attribute is the full URL specifying a protocol name, port number (this is optional), and
domain name.

0 iepluginurl —Specifies the URL where the client can download the JRE plug-in for Internet Explorer. The
value of this attribute is the full URL specifying a protocol name, port numbet {optional), and domain
name.

Params
The params action tag sends the parameters that we want to pass to an applet or bean. The following code
smppet shows the syntax of usmg the params action tag ina]SP page
<jspiparams> S
Sl one or-more Jsp param tags--> ;
</jsp:params> ; S Co
To specify more than one parameter value, we can use more than one jsp:param act:on tag w1thm a jsp:params
tag,
Fatlback

The fallback action tag allows us to specify a text message to be displayed if the required plug-in cannot run.
This action tag must be used as a child tag with the jsp:plugin action tag. If the plug-in runs but the applet or
bean does not, the plug-in usually displays a popup window explaining the error to the user. The following
syntax shows the use of the fallback action tag in a]SP page
«<jsp:failback> o
Text message that has to be d1sp1ayed if the p1_ 1
</jsp:fallback> e e T

Attribute

The jsprattribute action tag can be used to specify the value of a standard or custom action attribute. For
example, we can use the jspiatiribute tag to set the attributes of the jspisetProperty attribute, as shown in the
following code snippet:
<Jsp satProperty name="mybean"> et e
<jsp:attribute name="property” >uname</jsp attr1hute> coe T
<jsp:attribute name="value"»
Sl <jsp: express1on>unam2</jsp*ex;wession>
w/ispsattributes ool gl
</ispisetPropertys -
The jsp:attribute tag accepts the name and trimn attrlbutes where name bpecxhes the atmbute name that we want
to set, as shown in the preceding sample code; and trim takes true or false, indicating whether or not the
whitespace appearing at the beginning and at the end of jsp:attribute tag should be discarded. By default, the
leading and trailing whitespaces are discarded; consequently, the default value of the trim attribute is true.

The JSP container performs this operation at transaction time and not at request handling phase. For example, if we
use an expression tag in the body part of this action tag, and the expression tag produces a value with leading and
trialing whitespaces, then these whitespaces are not discarded by the JSP container. In the preceding code snippet, if
the uname variable contains leading and trailing whitespaces then container does not eliminate the whitespaces.

If the body of the jspiattribute tag is empty, you can specify its value by “*,

424

Working with JSP

Body
The <jsp:body> action tag can be used to specify the content (or the body) of a standard or custom action tag.
Generally, the body of a standard or custom action invocation is implicitly defined as the body of that tag,
However, if one or more <jspattribute> tags appear in the body of the tag, the body of a standard or custom
action can be defined explicitly by using the <jsp:body> tag. The jsp:body tag is required if the standard action
or custom tag has multiple jsp:atiribute tags.

You can use the jsp:body tag to specify the content for the body of JSP actions tags, except for some action tags
such as jsp:body, jsp:attribute, jsp:scriptlet, jsp:expression, and jsp:declaration.

If one or more jsp:attribute tags appear in the body of a tag invocation but no or empty jsp:body tag appears, it is
equivalent of the tag having an empty body. The following code snippet shows the usage of the <jsp:body> tag;
<jsp:useBean. id="mybean">
<jsp:attribute name="¢lass” trim="true”>
com.kogent.jspex:MyBean
</jspiattribute> o :) :
<jsp:attribute name="scope”>session</jspiattributes
<jsp:body> :
‘<jsp:setProperty name="mybean” property="*"/> .
</jspibody>
</jsp:useBean>

Element
The jsp:element action tag is used to dynamically define the value of the tag of an XML element, This action tag
allows you to create an XML tag with a given name. The content of the jsp:element tag is a template for the
attributes and child nodes of the XML tag you want to create. This action tag can be used in JSP pages and tag
files. The following code snippet shows the syntax of the element tag:

na

Cfsprbedy?
</jsp:element> e B T ERCTT
The name attribute of the element tag specifies the name of the XML element it has to create. You can also give an
expression as the name of the XML element. The jsp:element tag can be an empty tag or can contain one jsp:body
or multiple jsp:attribute attributes; with or without the jsp:body tag. The code snippet below shows how to use
the name attribute with the element action tag:
. cjsprelsment mames=tmytagt A o e T BT L e e
The <jsp:element> shown in the above code snippet creates an empty tag with the name, mytag.
The following code snippet shows another example of using the <jsp:element> tag with the <jsp:attribute> tag:
. <Ispielement name="Mytag"> R R . SRS

o eispiattribyute names myat*__t""'&w&é];fj;s-pj:at'*fi_r"ibutes "
<fsprelements U0 UL T _ : Rl

The <jsp:element> tag shown in the above code snippet, creates an empty element, named mytag. with an

attribute myatt="Myval ".

The following code snippet shows the use of <jsp:tag> to create an tag with attribute and body content:

~«jspitag name="mytag"® ... o N
<jsprattribute nafie="myatt"sMyval</jspiattribute> -
<jsp:body>HeTlo</jsp:body> '
</jsp:tag>
The preceding code snippet creates the tag named mytag with an attribute myatt="Mywval " and body text content

as Hello.

425

Chapter 12

Text

A jsp:text tag is used to enclose the template data in an XML tag. The text tag can be used in a JSP page or Tag
file. The content of a jsp:text tag is passed to the out implicit object. A jsp:text tag has no attributes and can
appear at any place where template data appears. The syntax to use the Text tag is:

o <3spitext> template ‘data </ispitexts SRR
Note that the template data can also contain expressions,
In this section, you learned about the new JSP standard action tags introduced in JSP 2.0. Let’s now learn how to
declare a bean in JSP,

Using a Bean in a JSP
Before declaring a Bean in a JSP, you must create a Bean. Let's Jook at an example to create a Bean. In this
example, we create a Bean called RegForm, which is used to set and get the attributes (such as user name and
email address) of a user, Let’s create the useBeanEx application to demonstrate how to use a JavaBean in a JSP
page. You can find the code files of useBeanEx application on the CD in the code\Java EE\Chapter 12\
useBeanEx folder.

Follow these broad-level steps to declare a bean in a JSP:

1. Create a Bean
2. Declare the Bean in a JSP by using the <jsp:useBean> tag
3. Access the Bean properties
4. Generate Dynamic Content
5. Deploy and run the application
Creating a Bean

We start by creating a Bean called RegForm. Listing 12.25 shows how to create the RegForm Bean (you can find
the RegForm java file in the code\Java EE\ Chapter 12\ useBeanEx\ src\com\ kogent folder on the CD):

: repass; ewa
JserName(String s){uname=s;}
sword(string 5){passs

. pubkic
CuMSIass
Declaring the Bean in a JSP
After creating the Bean, you can declare it in a JSP page by using the <jsp:useBean> tag. To declare the Bean in a
JSP, you have to create a JSP page. In Listing 12.26, we have created a JSP page with the name RegProcess, in
which we declare the bean created in Listing 12,25, Listing 12,26 shows the code for the RegProcess.jsp file (you
can find the RegProcess.jsp file in the code\ Java EE\ Chapter 12\ useBeanEx folder on the CD}):

426

Working with JSP

Listing 12.26: The RegPracess.jsp File
.<%@page errorPage="Registration.htmi% =
<tml>: O LT
<body> o By
<jspruseBean Gd="regfori” class
<jsp:setProperty name="regform”
<form’ actiom="ReghracessFinal: : SRR
First Name : <input types'text” Wames="first_name"/>.
Last Name : <input type="text” name<'"last.mame"/>
Address .} «input type="text" mame="address"/>

it Register”/>

"

Spex;ﬁégi%QFM“'_"s“c'qpé'="5‘és_s’1‘nﬁ"f> v

Mapres by 5

</body>
L efhitml A e LR :
The <jsp:useBean> action, tag creates an instance of a bean class according to the attributes specified in the JSP
page. The attributes of the <jspuseBean> tag used here are:

O id—Specifies the nani‘g of the bean that you want to declare

O class—Specifies name of the Bean class, which helps the J5P container in searching the Bean class and
creating its instance.

O scope—Specifies the scope of the bean

All these attributes help ISP container to create an instance of the Bean class. The <jspiuseBean> action tag has

some more attributes along with the attributes used in. You can also specify these attributes to make the Bean

more specific.

Accessing the Bean Properties
You can verify the bean properties by using the <jsp:getProperty> action tag. The <jsp:getProperty> action tag
uses the name and property tags to read the Bean properties. We have created the ViewRegistrationDetails jsp
page in this application to demonstrate how the <jsp:getPropetty> action tag is used to read the Bean property,
as shown in Listing 12.27. The code for the ViewRegistrationDetails page is provided in Listing 12.27 {you can
find the ViewRegistrationDetails.jsp file in the code\Java EE\ Chapter 12\ useBeanEx folder on the CD):

Listing 12.27: The ViewRegistrationDetails jsp File

‘scope=Tsession”/x .

propertys"firstame"”/>
-property="lastName" />

" ch>Tast Name - : :
‘property="address”/>

¢hraddress -
efpres o R E
‘<Form method=post: actin
. development') ;™ -
<input: types="submit” val
</form> : < s SR
</body> e : goy
Before reading the Bean properties, the JSP container needs to locate the instance of the Bean class created by
you. After the JSP container locates the instance of the Bean class, it starts reading the Bean properties by using
the <jsp:getProperty> tag. In Listing 12.27, you can see the attributes used with the <jsp:getProperty> tag. The
name attribute specifies the name of the Bean class to the JSP container and the property attribute specifies the
Bean properties that have to be read.

427

Chapter 12

Generating Dynamic Content within a JSP
The next step is to create an HTML page, named Registration html, to retrieve the required data from users. The
Registration.html page contains a button called Register. When a user clicks the Register button after providing
all user details, he/she is directed to the RegProcess.jsp page to set the properties of ‘RegForm’ JavaBean, based
on the details entered by the user. In other words, we use the Registration.html page to generate dynamic
content in the RegProcess jsp page. Listing 12.28 shows how to create the Registration.html page (you can find
the Registration.htmi file in the code\ Java EE\ Chapter 12\ useBeanEx folder on the CD):

Listing 12.28: The Registration.htm] File

“<htiml>

<body> .

. <pres :

<form action="RegProcess, jsp"><pres . _ _
userName - : <input type="text" name="userName" />
“'password i <input typa="password" name="password"/s

Repassword @ <input type="password" name="rePassword”/s
EMail ID : <input type="text" name="email"/> -

- <input type="submit" value="Register"/>"

</pres</form ' .) .

D w/pre> TLeesnih

© L.</body> . . T

In the Registration.htm! page, the param names such as userName, password, and rePassword are the same as

the property names in the RegForm bean. However, the other param names, such as first_name and last_name,

are different from the property names such as firstName and lastName. Therefore, the RegProcess JSP page is
created to set these properties in the RegForm bean.

Using this page, yon can declare a bean in JSP. The RegProcessFinal JSP page also collects some more
information about the user in the RegForm JavaBean in addition to what we have collected by using the
Registration.html] page. Here also, a Register button is provided, when you click on that button after entering all
user information, you are directed to the RegProcessFinal. JSP page, as shown in Listing 12.29 (you can find the
RegProcessFinal jsp file in the code\Java EE\ Chapter 12\ useBeanEx folder on the CcDy):

Listing 12.29: The RegProcessFinal jsp File
.<X@page errorfPage="Registration. htmi % . .
. <jspruseBedn Jd="regform" .
. “type="com. kogent. jspex.Regkars" scope="session"/s> . _ RIS MRS
T <jsprsetProperty name="regform" propefty="firstName" param="first_ name"/> _ -
<jsp:setProperty name="regform” property="TastName" param="3ast_name"/s T

_<}sp:setProperty name="regform" property="address"/s R
htole e P ¥ S
<body> L _
<pre> A o
Your registration details are valid, -+ - ; T BB RS
Click to view Registration Details and confirm. -
</body>
</htmls

Before using the <jsp:setProperty> or <jsp.getProperty> {ag in a JSP page, you must deciare a bean in that JSP page
by using the <jsp.useBean> tag. Before deploying and running the applicalion, ensure that you have compiled alf the

Java source files.

428

Working with JSP

Deploying and Running Application

You must place the pages and other resources as per the correct directory structure of this application. Figure
12.20 shows the directory structure of this application:

B Regstration.
@ RegProcessFod.jp

LW vewRegetrationDetak.js

Figure 12.20: Displaying the Directory Structure of the useBeanEx Appiication
Copy the userBeanEx folder into the <tomcat home>/webapps folder and start the Tomcat server.

The Deployment Descriptor web.xml shown in the directory structure contains an empty </web-app> tag.
Now, browse the application by using the URL http:/ /localhost: 9090/ userBeanEx/Registration.html and enter

the details as shown in Figure 12.21:

T G v i ete 6T G :
ke Gt ke vt s

Hacrare.a |

Figure 12.21: Displaying the Registration window.
Click the Register button to continue with the registration process. In this example, we store the username,
password, and email id into the RegBean by using the useBean and setProperty tags. We also set the RegBean
instance in the session scope. After you enter the details and click the Register button in the first screen, as
shown in Figure 12.21, the next screen displays the information of the user, as shown in Figure 12.22:

e Bt View Favertss Hew

T @ tamt Protscted Modes 0n

W Feomies LR e o
Firat Mape : Suchis
Lagt Wawe : dam
j Address : Deird
Pl
k | Regwt |

Tip e Ruwen <Y

Figure 12.22: Displaying the Registration Process window,

When you click the Register button of the second screen, the first name, last name, and address values are also
stored into the RegBean. The next screen confirms the validity of the registration details, as shown in

Figure 12.23:

429

Chapter 12

(e Edt View Favodtes Took

 Freorites (0 s ocathost 50907 useBearE CReghrocesskinal.. |

Xour rAGistrabion 4étaild are walith,
j o view Regastraticn Derails and confzrm.

@ Intemet | Protected Mode: On G or WMNE v

Figure 12.23: Registration final process window.

Clicking the hyperlink shown in Figure 12.23 displays all the details entered in the first and second screens, as
shown in Figure 12.24:

[Usar Name i Suchita
Fazsword T suchita
.| Bmail ID 1 guchita.ja:rn@kogentindia.com

| First Rame : Sochita

{ last Name : Jmin
Address 1 Delhy
{ Registe: |
£ & Internet { Protected Made: Op g v RIN% v

This screen confirms that the RegBean has been successfully created and set.

After understanding how to use the JavaBeans in a JSP page, let’s now discuss the implementation of JSP
standard tag library.

Using the JSP Standard Tag Library (JSTL)

The JSP Standard Tag Library (JSTL) is a collection of custom tag libraries, which provide core functionality used
for JSP documents, JSTL reduces the use of scriptlets in a JSP page. The use of JSTL. tags allows developers to use
predefined tags instead of writing the Java code. JSTL provides four types of tag libraries that can be used with
JSP pages:

The Core JSTL. — Used to process a JSP page in an application.
The XML Tag library — Used for parsing, selecting, and transforming XML data in a JSP page.
The Format Tag library — Used for formatting the data used in a JSP page.

The SQL Tag library — The SQL tag library is used to access the relational database used in a JSP page.
These tag libraries are described in detail next.

Describing JSTL Core Tags

The JSTL core tag library provides the JSTL core tags used in the JSP pages. The core tags are used to perform
iteration, conditional processing, and also provide support of expression language for the tags in JSP pages. The
core tag library can be used in a JSP page by accessing the following tag library:

430

0ooo o

Working with JSP

‘< B8 taglib prefixe"e" urisThtepi s ava. sun con/ist i coreT s P
The core tags in a JSP page can be accessed by using the prefix ‘c’, the preferred prefxx for core tag hbranes
The JSTL core tags are divided into three categories as listed here:

0O General-purpose Tags

0 Conditional and Looping Tags

U Networking Tags

The following section explains all these tags categories in detail. First, we start with general-purpose tags.

General-Purpose Tags

General-purpose tags include tags for writing the values to the output stream, as well as refrieving, setting, and
removing attributes and also include tags for catching exceptions. The general-purpose tags contain four tags:

O <cout>

Q <cset>
0 <cremove>
O <ccatch>

Let’s now discuss these tags.

The <ciout> tag
The <c: out> tag evaluates an expression that may be given in its value attribute or in its tag body and the
resulting value is written in the output. The syntax of the <c: out> tag is as follows
- <ciout attributes> ‘fbody - content] /ettty SRR A
The attributes of the <c: out> tag are;

O value—Specifies the output data to be displayed.

0 escapeXml—Specifies whether or not the tag should ignore the special XML characters. If boolean value of
escapeXML is frue, then the tag converts the XML special characters, such as <,>, & to their character entity
equivalents, such as < > and &. If the value of escapeXml is false then it does not convert the XML
special characters. The default value is true.

U default—Takes the value to be written to output if the given value resolves to null. If the value does not
resolve to null, the value specified in the value attribute is displayed. The default attribute can be even
specified in the body of the tag.

Using the <crout> Tag
Let’s create an application, jstlex1, which shows the use of the <c:out> tag. The application prints some request

related data by using the <ciout> tag. Listing 1230 shows the use the <ciout> tag (you can find the
GetRequestData jsp file in the code\Java EE\ Chapter 12\ jstlex1 folder on the CD}:

Listing 12.30: The GetRequestData Jjsp Flle
Mtaghb uri="h ar C

<htm'¢> o

<tr><td>nm Mquas c 'methockj" e :
U <tdact rout va1ue=“${page(:entext equest.method}"fwtm;ftm
<trctd>Request URT</Td> - - '

Chapter 12

Listing 12. Si shows the web xml file used for]stlexlexample (you can also fmd the web xml ﬁle on the CD in the
code\ Java EE\ Chapter 12\ jstlex1\ WEB-INF folder on the CD):

Llshng 12. 31 The web.xml File

Now to run ;stlexl example, we need two jar files, the first one is the jst1.jar, which is used to support the
JSTL API classes. The second is the standard. jar, which is used to implement classes of libraries. The jstl jar
and standard jar files enable us to access the JSTI. tag library. Both jstl.jar and standard jar files are present in the
Tomcat specification. To provide the support of JSTL in our Web application, copy the jstljar and standard jar
files into the lib directory of your application. Since the libraries are present in the lib directory of our Web
application, so we do not have to update the Deployment Descriptor. The JSP container automatically detects
and executes these JAR files.

After creating all the preceding files, arrange them, along with the jstljar and standard jar files, in the directory
structure shown in Figure 12.25:

B0 ptext

. i 1 |) ez
Flgure 12.25: Showing directory structure of jstlex1 application

Copy the jstlex] folder into the webapps folder of the Tomcat installation. Start the server and launch the
application by using the http:/ /localhost:9090/jstlex1/GetRequestData jsp?uname=Kogent URL. The Requested
URL window opens, as shown in Figure 12.26:

GetReguesiData.jsp

432

Working with JSP

Requested URL:

bitp:locadliost 9090 fstes | GetRequestData jsp
Request Path information:
" Name ¢ Value
| HITP Reqrslmdmd GET
] R-eqnest URY Me.:l Cretchuequ;sp
Coutex: Path ienl
Servict path " GetRequestData jsp.
1 Pathinfo
Past ransbred

Arcessing Request Parameter value:

Valoe of parameter mpame 5. Kogent URL

o o | D“ ._..__..__.‘l' *‘ s

Flgure 12 26 Showm’ the Output of GetRequestData .Jsp.

Figure 12.26 shows the output of the GetRequestData jsp file in which we have used the pageContext implicit
object of Expression Language and retrieved the request data. We have also used the param object to get the
parameter value.

The <c:set> Tag
The <c: set> tag is another general purpose tag, which allows us to set the value of a variable or property into the
given scope. The following code snippet shows the syntax of the <c: set> tag:
. <c:set-attriburestioly contentl: </cisets
The attributes of the <c: set> tag are listed here:

O value--Specifies the value being set. The value can also be an expression.
0O var—Specifies the name of the variable to store.

0 scope—Specifies the scope of the variable defined in the var attribute. Scope can be page, request, session,
or application,

0 target—Specifies the name of the variable whose property is to be set.
O property —Specifies the name of the property to be set
Note that if target attribute is specified, the property attribute must also be specified. In addition, you can use
either the var or target attribute for specifying the name of the variable.
The <c:remove> Tag

The <c: remove> general-purpose core JSTL tag allows us to remove a variable from the specified scope. The
syntax of the <c: remove> tag is:

C.eerremove AkEributes/> o T e e
The <c: remove> tag takes two attributes, which are:

0 var—Name of the variable to be removed.
O scope—Scope of the variable, scope can be page, request, session, or application.

The <c:catch> Tag
The <c:catch> tag is used to allow JSP pages to handle exceptions that might be raised by any of the tag inside
the body of the <c:catch> tag. The syntax of the <c: catch> tag is:

<c:catch attributess: body -contént </cicatchs - L

The <c: catch> tag accepts the var attribute, which takes the name of the vanable that stores the excephorl
thrown.

433

Chapter 12

Let’s now describe the conditional and looping tags of JSTL.

Conditional and Looping Tags

The conditional and looping tags include tags for writing if conditions, switch cases, and loops.

Types of Conditional and Looping Tags
Conditional and looping tags are of six types:

<c: if>

<c: choose>

<c: when>

<c: otherwise>

<c: forEach>

<c: forToken>
The following sections explain all these tags in detail.

The <c:if> Tag
The <c:if> tag evaluates an expression that is given in its ‘test” attribute. If the resulting value is true, the body of
the <c:if> tag is evaluated; otherwise not. The following snippet shows the syntax of the <cif> tag of]STL

=<eyifoattributes> body. content </ciif> e e s e

The attributes of <c: if> tag are listed here:

[R Ry iy s R

0 test—The boolean variable or expression resolving to boolean value
Q@ var—Namie of the variable to store the conditions result

0 “scope—5Scope of the variable to store the conditions result

The followmg code smppet shows the example for <c 1.f> tag

In the precedmg shown sruppet the <c 1f> tag checks whether or not the value of request parameter uname’ is
an empty string. If it is an empty string, the body part of the <ciif> tag is evaluated; if not, the body part is
skipped. Note that we de not have a tag that allows us to specify else part for the <cif> tag. If we want to
implement the else part of the <c:if> tag, then use <ciif> once again. The following section explains the <c:
choose> tag.

The <c:choose> Tag
The <c:choose> tag acts like a Java switch statement. The <c¢: choose> tag encloses one or more <c: when> tags
and a <c:otherwise> tag. The syntax of the <c:choose> tag is:
“«cichooses body -content </c:chooges

The following section explains about the <c:when> tag.

The <c:when> Tag
The <c:when> tag encloses a single case within the <c:choose> tag. The <c:when> tag must appear inside the
<c:choose> element. More than one <c:when> tag can be defined in a single <c:choose> element.
The syntax of the <c: when> tag is:
The <c: when> tag accepts only one artnbute, named test. The test attribute takes the boolean vanable or an
expression resolving to a boolean value. If this boolean value is true, the body content of the <c:when> tags is
evaluated. If this value is false, then the body content of the <c:when > tag is skipped.

434

Working with JSP

The <crotherwise> Tag
The <ciotherwise> is same as the <c: when> tag, but is unconditional. That is, the <c¢: otherwise> tag is
equivalent to the default case in a Java switch statement., The body content of the <c: otherwise> tag is evaluated
if none of the <c: when> conditions in the <c: choose> tag are resolved to true.

The syntax of the <c: otherwise> tag is:
<crotherwisex body content <fciotharwises o 7 w00 e, T R
Now, after learning about the <c:otherwise> tag, let’s look at <c: forEach> tag,
The <c: forfach> Tag

The <c: forEach> tag is used to iterate over a collection of objects or as a fixed loop over a range of numbers. A
common use of the <c:forEach> tag is to produce a HTML table containing data gathered from a SQL query or
other data source,

The syntax of the <c: forEach> tag of JSTL is:
«c:: forgach attributes> body content </c: foreachs

The attributes of the <c: forEach> are:

O items—Specifies the collection to iterate over. The collection can be ArrayList, Map, or List.var: Specifies the
name of the variable into which the current iteration item has to be set

O varStatus—Specifies the name of the variable that defines the status of the variable given in the var
attribute. The varStatus attribute is optional,

O begin—Takes the starting index for the loop; this attribute is optional
end —Takes the ending index for the loop; this attribute is optional
O step— An optional increment for the loop; the default value is 1

C

The <c:forTokens> Tag
The <c:forTokens> tag is used for looping over tokenized elements of a string.
The syntax of the <c:forTokens> tag of JSTL is:
-<ciforTokens attributess body content </c:forrokens> -
The attributes of the <c: forTokens> tag are:

Q items—Specifies the String to be tokenized. This attribute allows an expression

D var—Specifies the name of the variable into which the current iteration item has to be set

0 delims—Specifies the delimiter or delimiters, which are to be tokenized.

O varStatus — Defines the status of the variable given in var attribute, The varStatus attribute is optional
Q begin—Takes the starting index for the loop; this attribute is optional

G end-—Takes the ending index for the loop; this attribute is optional

Q step—Provides an optional increment for the loop; the default value is 1

Using Conditional and Looping Tags
We demonstrate two examples to use conditional and looping tags. The first example uses the <cif>, <c:when>,
<e:choose>, and <ciotherwise> tags. The second example uses the <c:forEach> tag,

An Example of Using Conditional and Looping Tags
Let’s create the jstlex2 application that demonstrates the use of conditional tags. In this application, we create
two pages, index.html and ProcessRequest.jsp.
The index.html page contains two text boxes, to accept two operands from the users, and two buttons named
Add and Subtract to demonstrate the add and subtract operations on the operands, Listing 12.32 shows the code
for the index.html file (you can find index.html file in the code\Java EE\Chapter 12\jstlex2 folder on the CD):
Listing 12.32: The index.html File
<htmls . - SRR e
<body> ..

Chapter 12

When the user clicks the Add or Subtract button on the 1ndex html page the control is transferred to the
ProcessRequest.jsp page. This page takes the operand from the index html page. The JSP page uses the <c: if> tag
to check the condition. The condition is either add or subtract, and depending on the condition, the required
operation is performed. The output is displayed by using <c: out>tag. Listing 12.33 provides the code for the
ProcessRequest.jsp page (you can find the ProcessRequest jsp file in the code\Java EE\Chapter 12} jstlex2 folder
on the CD):

Listing 12.33: The ProcessRequest jsp File
v «%8taglit uri="http://java.sun .com/jstifcore’

a‘[:n&“i{;:aranopﬂ” e

</hem,
After creating the two pages, we need to configure the app[lcatmn by usmg the web xml flle Llsnng 12 34
contains the web.xml file to configure the jstlex2 application (you can find the web.xml file in the code\Java
EE\ Chapter 12\ jstlex2\ WEB-INF folder on the CD):

Listing 12.34: The web.xml File

After creating all the preceding files, arrange them, along with the jstljar and standard jar files, as shown in
Figure 12.27:

D'@

Ftex2
- £ WEB-INF
L3 dasses
i:fb

il jar
. ih standard. jar
D webml
@ ndexhim
@ ProcessRequestip

Figure 12.27: Showing Directory Structure of the jstiex2 Application.
Copy the jstlex2 folder into the webapps folder of the Tomeat installation and start the Tomcat server,

After starting the server, launch the application by using the following URL:
http://localhost:9090/jstlex2/index.html. Figure 12.28 shows the output of the index.html page:

436

Working with JSP

xm @w: w‘smanluz.fmm T

operana 1 W
operead z A

fml

. Done e @ iema ot on i R e

Flgure 12 28 Showlng index.htmi to Entar the Operands

Enter some numbers into the text fields— operand 1 & operand 2—as shown in Figure 12.28 and click the
required arithmetic operation, Add or Subtract. After entering the operand, when a user clicks the Add or
Subtract button, the control is transferred to the ProcessRequest.jsp page. In our case, we have clicked the Add
button, and the ProcessRequest.jsp page demonstrates the output of the add operation, as shown in Figure 12.29:

Sure of 10 and 20 is 30

Olmu|mmmm ‘v ®100% - °

Figure 12. 29 Showlng Addition of Two Numbers

In the preceding example, we can use the <c:choose> tag instead of using two <c:if> tags, as shown in the
following code snippet:

Using the <¢: fbrEad7> Tag
The jstlex3 application demonstrates to get an employee information from the database and represents it to the
user with a JSP page using the <c: forEach> tag. The <c:forEach> tag is used to display each employee details. In
the jstlex3 application, GetEmpDetailsServletjava is created to retrieve the data from the database using
DriverConnectionjava, The DriverConnectionjava is used to create connection to MySQL data source. The
EmpDetailsView.jsp displays the data retrieved by the servlet GetEmpDetailsServlet java,

To get the data from the database, we use a servlet named GetEmpDetailsServletjava, a Java bean named
EmpDetails java and a connection class named DriverCennectionjava. To represent the Employee’s details to
the user, we use a JSP page (EmpDetailsView jsp) in which we use <c: forEach> tag. Listing 12.35 shows the code
for EmpDetails.java, where Java bean is used in our application to set and get data from the database. Listing
12.35 shows the code for the EmpDetailsjava file (you can find the EmpDetails.java file in the code\Java
EE\Chapter 12\jstlex3\ src\ com\ kogent\jstl folder on the CD). ~

L:stmg 12..35 The EmpDetails]ava Flle

';"::iﬁﬁ'{é&éhi_s,'.-'Sér-f}aiiz’éb‘i’é"{' oy

437

Chapter 12

public Empbetails O{} - Cr
public EmpDetaﬂs (int i, string s, int 3, ’m d){ ;
empno=1i; name=s; deptno=j; sal—d; : :

1
public void setEmpNo(int 1){empno=ﬁ;}
public int getémpNo(}{return empno;}
public void setName(sString s){name=s;}
public String getName() {return name;}
public void setpeptNo(int i){deptho<=i;}
public int getDeptNo(){return deptno }
public void setsal(int d){sal=d
public int getsa1(){return sabyk o
_String name; .
“int empno, deptno, sa1
¥/ /class ¢ ! o - : ‘
Listing 12.36 shows the code for DrlverConnectlon java, whmh is used to connect to the MySQL database (you
can find the DriverConnectionjava file in the code\Java EE\ Chapter 12\jstlex3\ src\ com\ kogent\jst] folder on

the CD):
Listing 12.36: The DriverConnection.java Flle
package com. kogent Jstl.
import java.sql. -
pub¥ic class Dr1verConnect1on {
pubjxc stat1c c0nnect1on getco

Listing 12.36 shows the source code of the GetEmpDetailsServlet.java file. The GetEmpDetailsServletjava file is
used to retrieve the employee details from the database table (emp) into a result set, which is then stored in the
array list. The retrieved details are then forwarded to the EmpDetailView jsp (see Listing 12.38) through
RequestDispatcher. Listing 12.37 shows the code for the GetEmpDetailsServlet class (you can find the
GetEmpDetailsServlet.java file in the code\\Java EE\ Chapter 12\]st1ex3\src\c0m\kogent\ jstl folder on the CD):

Listing 12.37: The GetEmpDetailsServlet.j]ava File
‘package com. kngent,]st1~f s ainneni
‘1mport Java.io.%; o
import’ javax. ser\ﬂet. HEERE
import Javax serv!et http.*;
import java.util.*
impors java. §g1. *" R R i - -
public-clags GetEmpoe:aiTSSeru1et extends nttpserviét
public void serv1ce(ﬂttpServ?etkequest ‘reguest HELD!
throws ‘ServietException,. Ioexceptlan {00
i connect%on conunu?l,-g,', R
try {

rﬁietkékpoﬁsg:respansz}ﬂzt'

: con=Dr1verconhect1onfg¢tcbn&é i

© Statement ‘st=con.crédtestatensnt(

- RESVI LSSt FS=5T, executeQuery("selact

- arrayList al=new APralest(),
Cwhile (rs next () { F
al.add{new. Empbeta1ls(

rs. getInt(l}, S .

- s, getstring(ename”)., .
s get:ntc"deptnn")

438

_ Working with JSP

e

.. HttpSession session=request.getSession();
. ' 'session:setAttribute("emps”,al);

. " Requestdispatcher rd= L
Lilrequest. getRequestnd spatcher("Empbetailsview.jsp™);
oordforward(request, response);

o T returng
Witey o0 - x
catch(Exception: e){e.printstackTrace():}
:’_F"malTyZ{try{'con__.chse() :} o i
- catch{Exception .e){e.printstackTrace(): 3
} “. e G e o
Listing 12.38 shows the source code of EmpDetailsView jsp page, which is used to display the employee details
forwarded through RequestDispatcher (see Listing 12.37). Listing 12.38 provides the code to display employee’s
details (you can find the EmpDetailsView jsp file in the code\Java EE\ Chapter 12\jstlex3 folder on the CD):

Listing 12.38: The EmpDetailsView.jsp File
HBtaglib uris®hrtp:t/java. sun. com/jstl/core” prefix="c"%s .

s bods

<th>DeptNo</th>
"${sessionScope.emps}” var="emp"s -

e="${enp. enpno} />
“'1qe*ﬁs{eﬁp-ﬁéﬁe}ff?:;.:ﬂﬁ,
td»- . . - T
rout-value="${emp.deptNo}"/> =
Lefrds wtdy . 0 . _

”'<)ﬁtm§;;ﬂ“"'- ; R T o B U T FRUE SN PO S
Listing 12.39 describes the servlet mapping in web.xml file {you can find the web.xml file in the code\Java
EE\ Chapter 12\ jstlex3\ WEB-INF folder on the CDy:

Listing: 12.39: The web.xml File

ﬂeb»am!: oo

. <serviet>. . T
<serviet-namesserl</serviet-name> .

<serviet-class=com.kogent.jst].GetEmpDetailsserviet

Loefserviet-class» -

[

<fserviets oo

<serviet-mapping>" | . .

“<serviet-namerserl</servlet-names
<url-patterns/GetEmpDetails</url-patterns
</servlet-mapping> . :
/wb-apps T .

After creating all the preceding files, arrange them along with jstljar, mysql-connector-java-5.0.4-bin jar, and
standard jar as the directory structure shown in Figure 12.30:

439

Chapter 12

\;-_' mysgh-connector java-5.0. 4. jr
: i standecd &
@ weboml
© @ EmpDetalsview.jsp

Figure 12.30: Showing Directory Structure of the jstlex3 Application
Now, copy the jstlex3 folder into webapps folder of the Tomcat installation and start the server.

Before running the jstlex3 application, ensure that created the emp table in the MySQL database.

Browse the example by using the URL hitp://localhost:9090/jstlex3/GetEmpDetails. Figure 12.31 shows the
output of the jstlex3 application:

alnumd EPmmchodeQn T ”fg”'r’iilui’- A

Figure 12.31: Showing Employee’s detail
The application displays all employee’s details as shown in Figure 12.31.

Networking Tags

Networking tags contain tags that perform certain operations on URLs, such as including some other Web pages,
encoding the URL, and redirecting the client request. The networking tags of }STL tags contains four tags:

O <cimport>

a <curl>

Q <credirect>

Q <cparam>

The following section explains all these tags in detail.

The <c:import> Tag

The <c: import> tag is used to include another resource, such as another JSP or HTML page, in a JSP page.
Moreover, the resource can be either static or dynamic. The <c: import> tag is similar to the <jsp: include> tag.
However, the <c: import> tag allows you to include the pages in another Web application.

440

Working with J5P

The following is the syntax of the <c:import> tag of JSTL:
el Mport attributess A AMport i Do T e
The attributes of the <c: import> tag are:
Q url—Specifies the URL of the resource to include
O context—Specifies the context name in which the page has to be located, this is an optional attribute
0O var—Specifies the name of the variable into which the result has to be stored, if specified
DO scope—Specifies the scope into which the variable has to be stored

The <c:url> Tag
The <ciurl> tag creates a URL and is added with a session ID if the user session needs to be maintained. This tag
functions similar to the encodeURL () method of the HttpServletRequest interface.
The following is the syntax of the <c:url> tag of JSTL:
<ciurl -attributess [zero or more <ciparam> tags] </c:url>
The attributes of the <c:url> tag are:
3 value—Specifies the URL to be rewritten if required added with session ID

O context—Specifies the context name of another Web application, required if the URL refers to the resource
in another servlet context

@ var—Specifies the name of the variable into which the new rewritten URL has to be stored
O scope—Specifies the scope of the variable defined in var attribute.

The <¢:redirect> Tag

The <credirect> tag is used to redirect a client request. This tag acts similar to the sendRedirect() method of the

HttpServletResponse interface.

The following is the syntax of the <c:redirect> tag of JSTL:

vy kerredirect attributessifzeroiar MOre <Ciparams. tags]: </fciredi paCty ahn

The attributes of the <c: redirect> tag are:

Q value—Specifies the URL of the resource to which the request has to be redirected

O context—Specifies the context name of another Web application, required if the URL refers to the resource
in another servlet context

The <c:param> Tag
The <c:param> tag is used to add a request parameter to the URL. This tag can be used in <cwurl> and
<credirect> tags.
The following is the syntax of the <c:param> tag of JSTL:

<gcrparam attributes/> . : o :

The attributes of the <c:param> tag are:
0 name—Specifies the name of the parameter
Q value—Specifies the parameter value

Describing the JSTL SQL Tags

The SQL tag library is used to access the relational database used in the JSP pages. The SQL tags are used for
rapid prototyping and developing Web applications. The SQL tag libraries can be accessed in a JSP page by
importing the following tag library in the JSP page:

&8 tag¥ib: prefin="sgl" uri="http: 77 java. sonicom/Fsp/isti/sql Mo it e gy

Types of JSTL SQL Tags ‘
The SQL tag library provides certain tags that are used in a JSP page to access a database. Table 12.2 shows the
different SQL tags available in the JSTL SQL Tag libraries;

441

Chapter 12

Table 12.2: The SQL Tag Library o

- query Executes a query specified in a JSP page
update Updates an SQL statement used in a JSP page
param Specifies a parameter in the SQL statement ;
dateParam Sets a parameter in the SQL statement into a java.util. Date value ;
setDataSource Specifies a data source that is to be accessed by executing a query
transaction Provides a connection to all the database operations that are to be executed in a JSP page i

Now, we discuss these SQL tags in detail in the next sections.

The <sgl:query> Tag
The <sql:query> tag executes the query specified in the sql attribute or in the tag body. Then, the result of the
query is set to the variable specified in the var attribute,
The following is the syntax of the <sql:query> tag of JSTL.
<sql:query attributes> [body content] </sqil tquery>
The attributes of the <sql:query> tag are:
O sgl—Specifies the SQL query that has to be executed, This attribute is optional and if not given, the query
needs to be specified in the tag body. The SQL query can be parameterized.
var—Specifies the variable name to which the result of the query has to be set
scope—Specifies the scope of the variable
dataSource —Specifies the datasource INDI name or java.sql.DataSource object

maxRows—Specifies the maximum number of rows that has to be included into the result, this value needs
to be greater than or equal to -1

0 startRow —Specifies the starting row number

Do oo

The body content for the <sql:query> tag accepts an SQL query and <sql:param> tags.

The <sqi:update> Tag

The <sql:update> tag executes a SQL staternent specified in the sql attribute or in the tag body. Then, the result

of the query is set to the variable specified in the var attribute.

The following is the syntax of the <sqlupdate> tag of JSTL:
<sqliupdate attributes> [body content] </sql;update>

The attributes of <sql:update> tag are listed here:

O sql—Specifies the update SQL statement that has to be executed. This attribute is optional and if not given,
the SQL statement needs to be specified in the tag body. The SQL query can be parameterized

O var—Specifies the variable name to which the result has to be set

8 scope--Specifies the scope of the variable

Q dataSource —Specifies the datasource JNDI name or java.sql.DataSource object

The <sql:param> Tag
The <sql:param> tag is used to set a parameter in the SQL statement.
The following is the syntax of the <sql:param> tag of JSTL:
<sqi:param attributes>[parameter val uel</sql:param>

The atiribute of <sql:param> tag is value, which is used to specify the parameter value that has to be substituted
in the SQL statement.

442

Working with JSP

The <sql:dateParam> 7ag
The <sql:dateParam> tag is used to set a Date parameter in the SQL statement.
The following is the syntax of the <sql:dateparam> tag of JSTL:
<s5ql:dateParam attributes/s> - oo e o
The attributes of the <sql:dateParam> tag are:
O value—Specifies the date parameter value that has to be substituted in the SQL statement
O type—Takes either ‘date’ or ‘time’ or “timestamp’

The <sql:setDataSource> 7ag
The <sql:setDataSource> tag binds a datasource to the specified variable.
The following is the syntax of the <sql:setDataSource> tag of JSTL:
<sg):setbatasource attributes/s>:
The attributes of the <sql:setDataSource> tag are:
dataSource —Specifies the datasource JNDI name or java.sql.DataSource object
driver —Specifies the JOBC driver class name
url —Specifies the JDBC URL referring to database
user—Specifies the database username
password — Specifies the database password
var —Specifies the name of the variable to which the DataSource object has to be set

oocooWwaooao

scope —Specifies the scope of the variable
Note that if dataSource attribute is used then driver, url, user and password attributes are not applicable to use.

The <sql:transaction> Tag
JSTL aliows you to use transactions through the <sql:transaction> tag. You use this tag to specify a data source
that you can use with the transaction. The <sql:transaction> tag groups <sql:update> and <sql:query> in its body
part into a transaction.

The following is the syntax of the <sql:transaction> tag of JSTL:
| <sqlvrransaction attriburess <l e e
2 esa) rquerys 1 >
s <sqliupdatesT
- fsglinransactions o w0
The attributes of the <sql:transaction> tag are:

O dataSource —Specifies the datasource JNDI name or java.sqlDataSource object to be used with this
transaction.

O isolation—Specifies the possible values for isolation attribute are READ_COMMITTED,
READ_UNCOMMITTED, REPEATABLE_READ, or SERIALIZABLE

Note that the <sql:query> or <sql:update> tags are used in <sql:transaction> tag are not allowed to have

dataSource attribute.

Using JSTL SQL Tags

The jstlex3 example demonstrates the use of JSTL SQL tags, which are used to create a connection with the
database. We have created datasource by using <sql:setDataSource> tag and set the datasource object in the
variable “myds”. Listing 12.40 is used to create the GetEmpDetails.jsp page to retrieve the employee detail from
the database table. To get the data from the database table {emp), we use <sql:query> tag and execute SQL select
statement whose result has been set to the variable “result”. Next, the page displays the records stored in the
“result” variable using the <c: forEach> tag. In corresponding to the each row retrieved from the database, a
hyperlink is created to remove the employee from the database. When, you click on that link, a new Jsp page
“RemoveEmp.jsp” opens. Listing 12.40 shows the code for the GetEmpDetailsjsp page (vou can find the
GetEmpDetails jsp file in the code'\Java EE\ Chapter 12\ jstlex4 folder on the CD):

443

Chapter 12

Listing 12.40: The GetEmpDetaiis.jsp File
<¥graglib.uri="http://java. sum.com/Jstl/sql” prefix="sqV %> . . =
X@raglib uri="http://Java.sun.com/jst1/core” prefix="c"%
<sql:setDatasoyrce driver="com.mysql.jdbc priver™ =~ -

urtstidbemysal t//tocathost: 3306 /sample® =00
 user="root” - et
password="root" var="myds" scope="request"/s
<sql:query sqt="sglect * from eaép' var="result"”
datasource="%{requestScope.my: SE o e
<htinl> <body> ' . o
" <table border="1">
<ciforeach items="${pagescope.result. columnNames
oo <the<eiout value="S{colname] /5«
Ceferforgachy . U T e
<th> </th> .~
<> L

<ciforeach items="${pageScope.result;ri
: <te> <t 7L

| <ciout value="${row. empno} ¥ i

Cftds g 0 T
Lo =eiout valuas
oSt et T,
‘<Ciout value="${row.ehame}" />
/s ardy LT
v kerout vaTue="${row sali s ¢

. &ftd> <tds : o
<a href= “"RemoveEmp

_ p. jspTempho=c
T U Removes/ay <A edy W/ e
. e Forgachs v o et
Sovosftables . T

~</fbody> </htwl> el 5 £ R
Listing 12.41 is used to create the RemoveEmp.jsp page to delete the employee detail from the database table
“emp”. To delete the employee detail from the database table, we use the <sql:query> tag and execute the
DELETE SQL statement. The result of the DELETE statement is stored in the variable “count”. Then, the
<sqkparam> tag has been used to set the “empno” in the SQL delete statement. Next, the code to check the value
of the count has been written. If the value of count is equal to 1, the details corresponding to the “empno” are
deleted. If the value of count is not equal to 1, the message Problem in removing Empleyee is displayed.
After removing the details of the employee from the database, a link (View Employees) to navigate to the
previous page has been created. Listing 12.41 shows the code for the RemoveEmp jsp file (you can find the
RemoveEmp jsp file in the code\ Java EE\Chapter 12\ jstlex4 folder on the CD):

Listing 12.41: The RemoveEmp.jsp File

<XBtaglib yri="http://java.sun.com/jst1/core” prefix="¢"%:
<%Braglib uri="http://java.sun.com/ist]/sq1" prefix="sql "%

N

<sql:setDatasource driver="com.mysq¥. jdbc.Oriver™:
url="jdbc:mysql://localhost: 3306/ sanple” 10 - -
CUSERSTIOOTY ot on e e B
L passwords!root! vars myds " scopes"request! fx-
- <sgl =ﬂe:‘-_'am:-q,z:';tas.euﬁca-"-f;{f.equsst_scou&- myds}

S{paran, emprio} /5

an val

| Uectif tesya"S{count e 135
S0 <beEmployes Removed</bs -
et

Working with JSP

Praoblem. in remm ng Emp'l oyee
{4 1f> :
© <br/s o S -
< hrefs"aetenipnetaﬂs JSD")V‘I ew £mp'ioyees)
Listing 12.42 shows the web.xml file in which, we have set the “GetEmpDetails. }sp” as welcome page (page that
will be the starting page). Listing 12.42 shows the mapping of the GetEmpDetailsjsp page (you can find the
web.xml file in the code\Java EE\ Chapter 12\ jstlex4\ WEB-INF folder on the CD):

Listing 12.42: The web, xml Flle

aweb-apps ..
awelcome~Fite-Tists -
. aselcome-fi 1e> 6etEmpDe'ca1 1s] 3p <[we1cone-ﬁ'le>s
_</welcome~Fi Te-list> .
</web-app>: : -
After creating all the preceding flles, arrange them along with jstl.jar and standard jar as shown in Flgure 12.32:
E? L.J)sﬂex4
TNF
23 dasses
s
Ll mysgl-connecior -java-5.0, 4-bin. jar
~m, standard.jar
4 web,xml
GetEmpletals.jsp
RemoveEmp. jsp

Figure 12.32: Showing Directory Structure of the jstlexd4 Application

Now, copy the jstlex4 folder into the webapps folder of the Tomcat installation and start the Tomcat server. Enter
the URL http://localhost:9090/ jstlex4/ GetEmpDetails jsp in your browser. It displays all the employee’s details
as shown in Figure 12.33:

| Fie b Vs mu-iu Took Hep
ver'mf"- e et pDelabjop

360 swhta 10 12000
A Vi 200 11000
102 Amkabd 40 10000 Remeve
1} 400 Clam 10 10006° :

PR
|
|

Figure 12.33: Showing Employee’s Detail with Remove Option

Click on any of the Remove link to remove the respective employee; for example, clicking on the Remove link in
the second row will delete the employee record with empno 101. This operation presents the view as shown in
Figure 12.34:

j Employea Removed

y View ees

Done T @etemelboleedModeOn v IR ¢

Flgure 12.34: Showlng Employee Removad Message
445

Chapter 12

In the next section, we discuss about JSTL formatting tags.

JSTL Formatting Tags

The format Tag library provides the support for internationalization. This provides the formatting of data in
different domains. The data can be dates, numbers, or the time specifications in different domains. The format
tag library can be used in a JSP page by using the following specification:
<@ taglib prefix="fmt" uri="http:/fjava.sun.com/isp/istl/fmt” %
The JSTL formatting tags are divided into four categories as listed here:
O Basic Formatting Tags
O Number Formatting Tags
0O Date Formatting Tags
O Time Zone Tags
Now, we discuss these categories in detail in the next sections.

Basic Formatting Tags

The JSTL basic formatting tags are used to format the data of a JSP page. These tags parse the data based on the
current locale and provide support for internationalization, The <fmt:setLocale> tag sets the localization settings
that are used by the <fmt:message> tag to do resource bundle look ups.

Types of Basic Formatting Tags

The tags used for formatting are:
<fmt:setLocale>
<fmt:setBundle>
<fmt:bundle>
<fmt:message>
<fmt:param>

oocooGoao

<fmtrequestEncoding>
Now let’s discuss each of these tags in detail.

The <fmi:setlocale> Tag
The <fmt:setLocale> tag stores the given locale in the locale configuration variable of the given scope.
The following is the syntax of the <fmt:setLocale> tag of]STL
<fmt:setiocale attributes/>
The attributes of the <fmt:setLocale> tag are:
QO value—5pecifies the locale, which contains a String value that contain a two-letter language code (in lower-

case as defined by I50-639), and may contain a two-letter country code (in upper-case as defined by ISO-
3166). Language and country codes must be separated by hyphen ‘™ar underscore *_’,

QO variant-Specifies the locale variant of the language referenced by value attribute,
O scope~The scope into which this object has to be set

The <fmi:selBundie> Tag
The <fmt:setBundle> tag creates a ResourceBundle object using the Locale object in the locale configuration
variable and the given basename, and stores the ResourceBundle object into the given variable and scope.
The following is syntax of the <fmt:setBundle> tag of]STL
<fmt:serBundle attributes/» .- *- .
The attributes of the <fmt:setBundle> tag are:

O basename —Specifies the resource bundle name
O var—Specifies the variable name to which this resource bundle object has to be set

446

Working with JSP

b scope--Specifies the scope of the variable defined in “var” attribute,

The <fmt:bundle> Tag

The <fmt:bundle> tag creates a ResourceBundle object by using the Locale object in the locale configuration
variable and the given basename and applies it to the formatting actions in its body content.

The following snippet shows the syntax of the <fmt-Bundle> tag of JSTL:
<fmt:bundle attributes> body content </fmt; bindles -
The attributes of <fmt:bundle> tag are listed here:
0O basename —Specifies the resource bundle name
O prefix—Specifies prefix that has to be used for the messages used in this elements body content

The <fint:message> Tag

The <fmt:message> lag maps key to localized message and performs parameter replacements using the resource
bundle specified in bundle attribute.

The following is the syntax of the <fmt:message> tag of JSTL:
<fmt:message attributes> body conterit </fmt:-message>
The attributes of <fmt:message> tag are listed here:
O key-—Specifies the key that whose value has to be retrieved
O bundle—Specifies the resource bundle that has to be used to get the value of the specified key
0 var—Specifies the variable to which the retrieved message has to be stored
U scope~Specifies the scope of the variable defined in “var” attribute.
The body part of <fmt:message> tag allows to use <fmt:param> tag to supply parametric values.

The <fmt:param> Tag
The <fmt:param> tag is used within the <fmt:message> element. This tag supplies the argument for the
parametric replacernent in a message.
The following is the syntax of the <fmt:param> tag of JSTL:
<fmt:param attributes/s - . .7 e R L e
The <fmt:param> tag accepts one attribute, value, which specifies the value of the parameter to be passed.

The <ﬁnt?equesﬂ9wzxﬁhg> fags
The <fmtrequestEncoding> tag allows to set the character encoding of a request. This tag invokes the
setCharacterEncoding() method of the ServletRequest interface to set the character encoding of a request,

The following is the syntax of the <fmt:requestEncoding> tag of JSTL:
<fmt:requestEncoding attributesfs -~ - ooa. oo e R I

The <fmt:requestEncoding> tag accepts one attribute, value, which represents the character encoding to be set.

The character encoding is further used to decode the request parameters.

Using Basic JSTL Formatting Tags

The jstlex5 example demonstrates the usage of the basic JSTL formatting tags. Listing 12.43 shows the code to
implement the concept of internationalization. The code for the 118NExample.jsp page is shown in Listing 12.43
(you can find the [18NExample.jsp file in the code\ Java EE\ Chapter 12\jstlex5 folder on the CD):

Listing 12.43: The [18NExampie.jsp File
<%@taglib uri="http://java.sun.com/jst1/fin" prefix="fmt "%
<k@taglib uri="http://java.sun.com/jst1/core” prefix="¢"%
This example demonstrates the basic ISTL formatting tags:
<br/s>
 _ S
tocale from client : ERN :
<b»<c:out value="${pageContext.request.ocale}"/>

<fmt:setBundle basename="Applicati onResources” . var="mybundie" />
<fmt:message key="welcome.message” bundTes"S{mybundTe}™>.

Chapter 12

<fmt:param vatue="${param.uname}"/>
</fmt:message>
</br> - B
<bsNow testing &1t;fmt: sethcﬂe> tag: <brf> :
cobrfe<brfe o R :
Creating a Resourcesund1a witb c1ient Iocale and sett:ng 1t tn <1;mybund1e1q11>
variable.
 _
«fmt:setBundle basename=" Apphtatwnkesaurces var‘ _whund]el"/:» .
- setving the locale to <i>ite/ds (italian). hr/si:
<fmt:setLocale values"it"/>" :

Creatm%ua resourceBundle with <1>1t</1> (1ta11an) lacale
<i>mybundle2</i> variable. .- o

<brfe<brf> . : : .
<fmt:setsundle basenamea"AppHcatwnResources var==“mybundle2"/>
uessage usmg <1>mybund“le1</1> <br'/>

KPR :

and setting frto

<fmt message bund1e="${mybund1 el}" key="we'lcame mssagq
<fmt:param: va"!ue:"!i{param- unamed" 7> .
<ffmt message> e
Cfpres LT
xbr/> ' - T
<h>Message usmg <1>mybund‘le2</1> qu) <br'/> .
Capres S
<farts mes:;age hundTEu"S{Mund’ez "
S <fmt:param valye
</ fnt:messages> S
<fore> :
Listing 12.44 shows the web xml flle to set the welcome page (you can fmd the web xml file in the code\]ava
EE\ Chapter 12\ jstlex5\ WEB-INF folder on the CD):

Listing 12.44: The web.xml File
<web-app> :
welcome-file- T1st> P
welcome-Tiles 3:18HExamp
</we'tcame f11e—11
Listing 12.45, 12.46, and 12.47 show the code to create propertles ﬁles to set the language accordmg to the locale.
These properties files contain a key welcome.message and a value corresponding to this key. You can also
find these listings in the code\ Java EE\ Chapter 12\jstlex5\ WEB-INF\ classes folder on the CD.

Listing: 12.45: ApplicationResources_en.properties
- welcome.messageswelcome to internationalization {0} (Engiish user).
Listing: 12.46: ApplicationResources_en US.properties
welcome . message=welcome to internationalization <b»{G} (US- English user) .
Listing: 12.47: ApplicationResources_it.properties
welcome. message=welcome to internationalization {0} (Italidn user)’
Arrange all the files in the directory structure, as shown in Figure 12.35:
4 e I P
{50 WEBIW
- ApplicationResources_en.properties
d ApplicationResources_en_US.proper ties
Lo (¥ AppicationResources_jt, properties
ER= I
el e
Lo standard.jar
DoE weboml
@ 118NExample.jsp

Figure 12.35: Showing directory structure of jstlex5 application

cay"we T come e

Working with JSP

Now, copy the jstlex5 folder into webapps folder of the Tomcat installation and start the server. Browse the
jstlex5 application by using the URL http://localhest:9090/ jstiex5118NExample jsp?uname=Kogent, which

presents the output as shown in Figure 12.36:

5%

g ra, fol .,

o bors 8 b

i Locaic fom chent - en 1S

| Now testing <fmrsatlocale> iag:

Setting the Jocal: to 7 (itafisa}

1 “This exansyple demoastrates the, basi JSTL formeatting tags.

Wekome lo nternationabraton Kogeat (1S Eaglish user)

Creating RescorceBunde with client iocale md seting it 1oy dtuwdle] vannbie

Cresing 3 ResovrceBundie with ir ki) focale and seting # to mybsmndlia varisble

| Message wsing aspbandicl:
Ksicorms zz internsrasmaliTaticr Fogent [U8 Ergllsh usel)
[} Message namy mybundie2:
Welcowe ro interrmaricnailraticon Kogent Italian ssesd
- Dore @ Intermet | Frotecied Mode On

IR RT T SE

PRI EEET T

Figure 12.36: Showing Basic JSTL. Formatting Tags

Number Formatting Tags

The JSTL number formatting tags are used to format the number data. The formatting aspect of number
formatting tags includes the currency-related formatting, number parsing and formatting, and formatting

percentages.

Types of Number Formatting Tags
The tags used for number formatting are:
Q <fmtformatNumber>
O <fmt:parseNumber>
Now let’s discuss each of these tags in detail

The <fmt:formatNumber> Tag

The <fmt:formatNumber> tag allows us to format numbers, currencies, and percentages according to the locale

or customized formatting pattern.

The following is the syntax of the <fmt:formatNumber> tag of JSTL:

The attributes of the <fmt:formatNumber> tag are:

a value—Specifies the numeric value that has to be formatted to the locale or given pattern. This attribute is
optional and if not specified then the numeric value to be formatted should be given into the body content

of this tag.

O type—Specifies the value type, accepted values are number, currency, and percent. If this attribute is not

specified, default is taken as number.

O pattern—Specifies custom pattern to which the given value has to be formatted.

O currencyCode—Specifies the currency code as per ISO 4217 that has to be used in formatting. This is
applicable only when the type is currency (ie. when formatting currency) otherwise this attribute is

ignored.

449

Chapter 12

Q

[}

00D 00O

a

currencySymbol — Specifies the currency symbol that has to be included into the formatted number. This
attribute is applicable only if type=currerncy is set otherwise this attribute is ignored.

groupingUsed —Specified whether the formatted output should contain any grouping separators. Takes
boolean value, default is true.

maxIntegerDigits — Specifies maximum number of digits in the integer portion of the formatted output,
minlntegerDigits —Specifies minimum number of digits in the integer portion of the formatted output.
maxFractionDigits — Specifies maximum number of digits in the fractional portion of the formatted output.
minFractionDigits — Specifies minimum numbser of digits in the fractional portion of the formatted output.

var—Specifies the variable name to which the formatted value has to be stored, if this attribute is not
specified then the formatted value is written to the current JspWriter.

scope —Specifies the scope of the variable defined in “var” attribute.

The <fint.parseNumber> Tag
The <fmt:parseNumber> tag allows us to parse the string representations of numbers, currencies, and
percentages formatted according to the locale or customized formatting pattern.

The following is the syntax of the <fmt:parseNumber> tag of JSTL:

<fmt:parseNumber actributes> [body content} . </fmt:parseNumbers>

The attributes of the <fmt:parseNumber> tag are:

u]

]

Q

value—Specifies the string value that has to be parsed according to the locale or given pattern. This
attribute is optional and if not specified then the string value to be parsed should be given into the body
content of this tag.

type—Specifies the vaiue type, accepted values are number, currency, and percent. If this attribute is not
specified, default is taken as number,

pattern—Specifies the custom formatting pattern that determines how the given value is to be parsed.

parseLocale—Specifies the Locale whose default formatting pattern is to be used during the parse
operation, or to which the pattern specified via the pattern attribute (if present) is applied.

integerOnly — Specifies whether just the integer portion of the given value should be parsed. Default is
false.

var—Specifies the variable name to which the parsed value has to be stored, if this attribute is not specified
then the formatted value is written to the current JspWriter,

scope — Specifies the scope of the variable defined in “var” attribute.

Using Number Format Tags .
The jstlex6 example demonstrates you how to use JSTL number format tags. The example uses
<fmt:formatNumber and <fmt:parseNumber tag.

Listing 12.48 shows the code to create index.html page to get the number from a user. This listing contains one
text box, where user will enter the number, and a button. On clicking the button, the control will transfer to the
TestAppjsp (Listing 12.49). Listing 12.48 provides the code for the index.html file (you can find the index.html
file in the code\Java EE\ Chapter 12\jstlex6 folder on the CD¥:

Listing 12.48: index.html

b
i

<input type="subm
 </pre> </form
</bodys. </htmls

Listing 12.49 shows the code to convert the number reh-iéved through index html page into a specific format
{you can find the TestApp.jsp file in the code\ Java EE\ Chapter 12\, jstlexé folder on the CD):
Listing 12.49: The TestApp.jsp File

450

Working with JSP

<¥4@taglib uriz ¥
. <H@taglib uriz"htt
~<htmls> <body>~
My Number: S) BT
U <bs<Ciout va}ue="${param mynumber}"/><jb> </b_ SES AR
Fermatting My Number:.

 - '
<fmt; setLocaTe vaTueu"vt"/>
IR Italy i : .

<t setLoca'le
. <pres::
-pefault pattern: <h>

<fmt : formathumber - type="currency” va?uea"s{param mynumber}"/x/b:-
ysing patrern: (0, oa, 00. 0080) :

",.<ﬁnt : formatnunber ' type=' eurrency” val uee"S{param mynumher}" currencyswbcﬂz"s"
- pattern="0,00,00. " var="fmt_mynumber” />

<CIOUT . va‘!uea‘g_‘i{fmt..mynumher}"/>

“xfpre» -

. :(bl’/!’ } : .

e After parsing t matted mynumber <fm: parseuumber va,lue».—:“!‘.{fm number "
- typest curnr% v attern="0 BO 00, DOOG /> : uy }
" </bodys<zhtmis

Listing 12.50 shows the web.xml page to set the welcome page (you can fmd the web xml file in the code\Java
EE\ Chapter 12\ jstlex6\ WEB-INF folder on the CD):

Llshng 12.50: The web.xml Flle
- quab-apps

qve?c
_ </wa'l come Fi

dm
Arrange all the files as shown in Figure 12.37, copy jstlex6 folder into <tomcat home>\webapps folder, and start
the server.

G 3 jstexs
2~ t‘.‘i WEB-INF
4% dasses
El o b
H st jor
i standard.jor
@ index.hmi
~igh. TestApp.jep
Figure 12.37: Showing Directory Structure of the jstlex6 Application

Browse the example by using the URL, http://localhost:9090/jstlex6/index.html, which displays a
form as shown in Figure 12.38:

451

Chapter 12

“Mﬂngwmﬂedlﬂndrﬂn””r””” B tu hd ’Kim* '*“:;

Figuro 12 38 Showing the index.htmi Page to Enter the Number

Enter some number as shown in Figure 12.38 and click on Format Number button. This makes a request to
TestApp.jsp. The TestApp.jsp formats the given number in Halian and US locale formats with default and given
pattern as shown in Figure 12.39:

Default pattern:
¥ 133.436.789.00

k C=ing patterr 12,20,00.0000%:
1 1.33.45,67.89,0000

H aUS

Setault pazters:
§123,455,789.00

Taing pattern (2, 24, 20.00001:

1.23 4%, 67.29.000C

After parsing the formaned mymomber: 1 23456789

Flgura 12, 39 Showlng JSTL Nun‘lber Format Tags

Date Formatting Tags

The JSTL date formatting tags are used to format the date type of data. These tags help in formatting and parsing
date-time data. The <fmt:formatDate> tag formats the date-time data and <fmt:parseDate> tag parses the date-
time data.

Types of Date Formatting Tags
The tags used for date formatting are:
a <fmtformatDate>
0 <fmt:parseDate>
Now let’s discuss each of these tags in detail.

The <fit:formatDate> Tag

The <fmt:formatDate> tag allows us to format dates and times according to the locale or customized formatting
pattern.

The following is the syntax of the <fmt: formatDate> tag of]STL
<Fot:formatoate aEtrdbutRs /s & e T il nl DT TR e
The attributes of the <fmt:formatDate> tag are:

a value—Specifies the java.util. Date object whose Date and / or Time to be formatted.

452

Working with JSP

a

Q

type—Specifies the components of the given date object which has to be formatted, accepted values are
date, time, and both. If this attribute is not specified, defauit is taken as date.

pattern ~ Specifies the custom pattern to which the given value has to be formatted.

dateStyle —Specifies the predefined formatting style for dates. Accepted values are default, short, medium,
long, and full. This is applicable only when the type is date or both date and time; otherwise this attribute is
ignored.

timeStyle —Specifies the predefined formatting style for time. Accepted values are default, short, medium,
long, and full. If this attribute is not specified default is taken as default. This is applicable only when the
type is time or both date and time; otherwise, this attribute is ignored.

timeZone —Specifies a String value that may be one of the time zone IDs supported by the Java platform or
a custom time zone ID, in which to represent the formatted time.

var —Specifies the variable name to which the formatted value has to be stored, if this attribute is not
specified then the formatted value is written to the current JspWriter.

scope —Specifies the scope of the variable defined in “var” attribute.

The <fml:parseDate> Tag
The <fmt:parseDate> tag allows us to parse and format the string representation of dates and times according to
the locale or customized formatting pattern.

The following is the syntax of the <fmt; parseDate> tag of JSTL:

<fmt:parsepate attributes/>

The attributes of the <fmt:parseDate> tag are:

Q
Q

0

a

]

value —Specifies the Date string to be parsed.

type —Specifies whether the given value contains date or time or both. If this attribute is not specified
default is taken as date.

pattern —Specifies the custom pattern to which the given value has to be formatted.

dateStyle—Specifies the predefined formatting style for dates. Accepted values are default, short, medium,
long, and full. If this attribute is not specified default is taken as default. This is applicable only when the
type is date or both otherwise this attribute is ignored.

timeStyle —Specifies the predefined formatting style for times. Accepted values are defauit, short, medium,
long, and full. If this attribute is not specified default is taken as default. This is applicable only when the
type is time or both, otherwise this attribute is ignored.

timeZone —Specifies a String value that may be one of the time zone IDs supported by the Java platform or
a custom time zone ID, in which it represents the formatted time.

parseLocale —Specifies the Locale whose default formatting pattern is to be used during the parse
operation, or to which the pattern specified via the pattern attribute (if present) is applied.

var —Specifies the variable name to which the formatted value has to be stored, if this attribute is not
specified then the formatted value is written to the current JspWriter.

scope —5Specifies the scope of the variable defined in “var” attribute.

Using Date Formatting Tags
The Listing 12.51 of jstiex7 application demonstrates you how to use JSTL date format tags. The application uses
<fmt:formatDate> and <fmt:parseDate> tag for formatting and parsing of Date information.

Listing 12.51 shows the code to format the date according to the specific locale corresponding to the specific
pattern (you can find the TestApp.jsp file in the code\ Java EE\ Chapter 12\ jstlex7 folder on the CD):

Listing 12.51: The TestApp.jsp File

<Xetaglib uris"hvep://java.sun, com/ist1/fmt" . prefix="fmt"%> .
<ataglid’ uﬂ="http /!java stn.comfjstT/core” preﬁx="c"%>

<html>

453

Chapter 12

<body>
"~ <JpageContext. setAttrlbute("mydate",new Java util; nate() Pagecontext PAGE_SCOPE) ¥
Current Date and Time: . g
<b»<ciout vatue="${mydate}"/> </br>
Formatting Date: <br/»>

<fmt:setLocale value=" 1t"/>
In Italy:
<pre>
Default pattern:zh> _
<fmt:formatDate type="both" value="${mydata}“/>
using pattern (dd-mMM-yyyy hh:mm:ss):
<fmt: formatbate type="both" vaIue="${mydate}“ pattern=“dd—MMM—yyyy hh o ss"/>
</pre>

In us:
<fmt:setLaocale va1ue="en us"/>
<pres
pefault pattern: : : o
<fmt:formatbate type="both" va1ue~“${mydate}"/>
using pattern (dd-mMM-yyyy hh:mm:ss): =~ e
<fmt:formatbate type="both™ va!ue="${mydate}" ba"c’fer-ﬁ_-_'&""dd;ﬂm—_yyyy hhimm:ss”

var="fmt_mydate" />

<C:out va1uez"I{fmt_mydate}"/></h>
</pre>

after parsi (? the formatted mydate <ﬁnt parseDat] v
pattern="dd-MmM- -YYYY ‘hh:mm:sst /> _ :

8 {frt mydate}" ‘type="both" -

</body>

</html> . S e " Dl B L LT Ly P Y e :
Listing 12.52 shows the web xml page to set the welcome page (you can fmd the web xml flle in the code\]ava
EE\ Chapter 12\jstiex7\, WEB-INF\, folder on the CD):
Listing 12.52: The web.xml File

<web-app> .
<we]come-fi 1e -1i st> . : :
<welcome-Fi 'Ie>TestApp jsp </we‘lcame-fﬂe>
</welcome-file- 11st>
</web-app> . SRR .
Arrange all the files as shown in Figure 12.40, copy jstlex7 folder into webapps folder of the Tomcat 1nstallahon
and start the server. Figure 12.40 shows the directory structure of the jstlex7 application;

EEC.) jstlex7
B-{3 WEB-INF

= jsthar
o standard.jar
] @& web.xml

9 TestApp.jsp

Figure 12.40: Showing Directory Structure of the jstlex7 Application

Browse the example using the URL: http://localhost: 9090 /Jistlex7/TestApp.isp, which formats
current date into Italian and US locale formats with default and given pattern as shown in Figure 12.41:

454

Working with JSP

| Cuent Date met Time. Fri Jul 24 20-01:56 1ST 2008
Fornatteg Date

In Ttaly-
Detpclt patrexn:
24-Iug-2009 20.01.56

] Tring pacters (dd-MM-vyyv Rhonm:as):
24-1ug-2G0% 08:0%:5¢

InUS:

Defaulr parzern:
Jul 24, 2005 8:01:56 P
Udlng pattern (dd-MMM-7vyvy hhiom:ss):

24-Jul-2209 05:Gi:EE

After parsing the formatred mrydate: Fri Jol 14 (8:01:36 TST 2008

O i St
Figure 12.41: Showing JSTL Date Format Tags

Time Zone Formalting Tags

The JSTL time zone formatting tags are used to format the time zone type of data. These tags help in setting the
time zone by using <fmt:setTimeZone> tag. The <fmt:timeZone> tag specifies the time zone to be used by all the
tags within this tag.

Types of Time Zone Formatting Tags

The tags used for time zone formatting are:
Q <fmt:timeZone>

U <fmt:setTimeZone>

Now let’s discuss each of these tags in detail

The <fmt: timeZone> Tag

The body content of the <fmt: timeZone> lag specifies the tags that will be controlled by the time zone specified
in <fmttimeZone> tag.

The following is the syntax of the <fmt:timeZone> tag of JSTL:

o refmriioezone: artrinutess body content «</fmt:timezones 0

The <fmt:timeZone> tag 'accepts one attribute, value, which specified the java.util.TimeZone object or a
String that represents a time zone ID.,

The <fmt:setTimeZone> Tag

The <fmtsetTimeZone> tag stores the given time zone in the time zone configuration variable of the given

scope.

The following is the syntax of the <fmt:setTimeZone> tag of JSTL:
<fmt:setTimezone attributés/y . CATEs

The attributes of the <fmt:setTimeZone> tag are:

O value—Specifies a String value that may be one of the time zone IDs supported by the Java platform or a
custom time zone ID,

Q var—Specifies the variable name

O scope—Specifies the Scope into which this object has to be set

455

Chapter 12

Using TimeZone Formatting Tags
The Listing 12.53 of jstlex8 example demonstrates you how to use JSTL timezone format tags. The following
example uses <fmt: timeZone> tag.

Listing 12.53 shows the code to specify the time zone corresponding to a specific timezone ID (you can find the
TestApp jsp file in the in the code\ Java EE\ Chapter 12\ jstlex8 folder on the CD):
Listing 12.53: The TestApp.jsp File
<¥@taglib uri="http://java.sun.com/jstl/fmt" prefix="fmt' %=
<¥@taglib uri="http://java.sun.com/jst]/core" prefix="c"%
<htmi> <body>
<¥pageContext.setAttribute("mydate”,new java.util.bate(},PageContext.PAGE_SCOPE) ;%>
Current bate and Time:
<c:out value="%{mydate}"/> </br>
Formatting Date based on Time Zone:

GMT:
<prex
<fmt:timeZone value="GMT">
<fmt: formatbate type="both" va]ue—“S{mydate}"/>
</fmt: t1meZone></h>
</pre> ’

6 hours 3¢ mxnutes ahead of GMT :
<pras
<br<fmt:vimeZone value="GMT+(6; 30“ : L ;o
: . <fmr: formatDate . type-“bnth" value~ S{mydate}"f>
</fmt:timeZone>
</pre>

10 hours 30 minutes behind the GMT :
<pre>
<fmt: timezone value=" GMT—lO 30" . . :
<fmt:formatDate type="both" va1ue—"${mydate}"/>
</fmt:timeZone>
</pre>
</body></htm]>

Listing 12.54 shows the web.ml file to set the welcome page (you can find the web. xml in the code\Java
EE\ Chapter 12\jstlex8\ WEB-INF folder on the CD):

Listing 12.54: The web.xml File
«web-app>
<welcome-file-Tist> s
<welcome-File>TestApp. jsp </we1come f11e>' E
</welcome-file~1ist>
</web-app> “ .
Arrange all the files as shown in Figure 12.42, copy jstlex8 folder into webapps folder of the Tomcat installation,
and start the server. Figure 12.42 shows the directory structure of the jstlex8 application:

B3 jstiexB
S WEB-INE
;-4 dasses
2 b
O = B 4
: -, standard.jar
@ weboml
& TestAppjsp
Figure 12.42: Showing Directory Structure of the jstlex8 Application

456

Working with JSP

Browse the application by using the URL: http://localhost:9090/istlex8/TestApp. jsp, which
converts the current time of 15T to GMT, GMT +06:30, and GMT -10:30 as shown in Figure 12.43:

::::ﬁ

& - tocaben

N s

| FHe Edt View Favortes Tools Help
s Favortes [E] hitp:/ocsthost:a0o0; jsthed{ Testapp jsp

{€ Date ad Time: Sat Fal 25 10:04:01 IST 2|
F ing Date based on Time Zone

GMT
6 Sours 30 mimnes abead of GMT

Jul 25, 200% 11:04:01 AM

10 howrs 30 mimutes bekind the GMT

Jux 24, 2009 6:04:01 PM

Dene '@ Internet | Protecred Mode: On

T ommx v

Figure 12.43; Showing Date Formatting Based on Time Zone

JSTL XML Tags

The XML tag library is used to work with XML data used in the JSP pages. The XML tag library helps parse and
transform the data used in the JSP page. These operations can be done by using the XPath expressions associated
with an XML document. An XPath expression includes both the relative and the absolute path of the XML
element. The XML tags can be used with the JSP pages after importing the following tag library by using the

following code snippet:

&6 taglib prefix="x" uri="http://java .sun.com/jsp/ist1/xmt” %
XML tags can be accessed by using the prefix ‘x”. It is the predefined prefix used for XML tag libraries.

All the JSTL XML Tags can be categorized into following categories:
O XML Core Tags

Q XML Flow Control Tags

0 XML Transformation Tags

Let’s explote all these categories in detail.

XML Core Tags

The JSTL XML Core tags include the tags for parsing XML documents and performing XPath operations. The

XML Core tags are of three types:

Q <xparse>

O <xout>

o <xset>

The following section explains all these tags in detail.

457

Chapter 12

The <x:parse> Tag
This tag parses the given XML document and stores the resulted XML Document Object Model (DOM) into the
specified variable.
The foilowing is the syntax of the <x:parse> tag of JSTL.
<x:parse attributes> [body content] </xiparse>
The attributes of the <x:parse> tag are:
8O doec—Accepts an XML document to be parsed in the form of a string or Reader object that locates the XML
document to be parsed.
systemld — Accepts the system identifier {URI) for parsing the XML document.
filter — Accepts an org.xml.sax.XMLFilter object to be applied for the XML document.
var—Specifies the variable name to which the parsed XML document has to be set.
scope ~Specifies the scope of the var attribute,

varDom —Specifies the variable name to which the org.w3c.dom Document object of the parsed XML
document has to be set.

0O0GCOoOQ0oCC

U scopeDom-—Specifies the scope of the varDom altribute.

The <x:out> Tag
The <x:out> tag evaluates an XML XPath expression and writes the result of the evaluation to the current
JspWriter.
The following is the syntax of the <x:out> tag of JSTL:
<xX:iout attributes/> : ' -
The attributes of the <x:out> tag are:
Q select— Accepts an XML XPath expression to be evaluated.

9 escapeXML— Accepts a boolean value that describes whether the characters such as >, <, &, ',”” in the result
string has to be converted to their corresponding character entity codes. The default value is true.

The <x:set> Tag
The <x:set> tag evaluates an XML XPath expression and stores the resuit of the evaluation in a scoped variable,
The following is the syntax of the <x:set> tag of JSTL:
<x:set attributes/> :
The attributes of the <x:out> tag are:
Q select—Accepts an XML XPath expression to be evaluated.

D var—Specifies the name of the scoped variable to hold the result obtained after evaluating the given XPath
expression.

O scope—Specifies the scope of the var attribute.

XML Flow Control Tags

The JSTL XML Flow Control tags heip perform various operations such as easily parse and access XML data,
iterate over elements in an XML document, and conditionally process JSP code fragments depending on the
result of the given XPath expression.

The XML Flow Control tags of JSTL contain five tags:
<x:if>

<x:choose>

<x:when>

<x:otherwise>

<x:forEach>

The following sections explain all these tags in detail.

458

OO0 Oo0Ooo

Working with JSP

The <x:if> Tag
The <x:if> tag evaluates an XPath expression that is given in its ‘select” attribute. If the resulting value is true,
then the body of the <x:if> tag is evaluated; otherwise not.

The following is the syntax of the <x:if> tag of JSTL:
<x:if attributes> bhody content </x:if>
The attributes of the <x:if> tag are:
O select—Takes an XPath expression that resolves to a Boolean value
O var—Takes the name of the scoped variable to store the conditions result
O scope—Specifies the scope of a variable

The <x:choose> Tag
The <x:choose> tag acts similar to the Java switch statement. The <x: choose> tag encloses one or more <x:
when> tags and a <x:otherwise> tag,
The following is the syntax of the <x:choose> tag of]STL
<x:choose> bady content </x:choose>
Body content of <x:choose> tag includes one or more <x:when> tags and zero or one <x:otherwise> tag.

The <x:when> Tag
The <x:when> tag encloses a single case within the <x:choose> tag,.
The following is the syntax of the <x:when> tag of JSTL:
<x:when attribute> body. content </x:whens:

The <x:when> tag accepts only one attribute Select, which takes an XPath expression resolvmg to boolean value.
If the Boolean value is true, the <c:when> tags body is evaluated.

The <x:otherwise> Tag

This is same as <x:when> tag but is unconditional; this is equivalent to default case in the Java switch statement.
The body content of this tag is evaluated if none of the <x:when> conditions in the <x.choose> tag are resolved
to true.

The following is the syntax of the <x:otherwise> fag.of JSTL:
<xiothérwise> body coptent </xiotherwise>
The <x:forEach> tag
The <x:forEach> tag is used for looping over a list of elements obtained after evaluating the given XPath
expression.
The following is syntax of the <x:forEach> tag of JSTL:
<x:forgach attributes’> body content </x:foreach>
The attributes of the <x:forEach> are:
QO select—Takes an XPath expression that results a node list
0 var—Specifies the name of the variable into which the current iteration item has to be set

QO varStatus —Specifies the name of the variable that lets us to know the information about where are we in
the overall iteration such as getting count, index, knowing isFirst, isLast etc, this attribute is optional

O begin—Takes the starting index for the loop, this attribute is optional
0 end—Takes the ending index for the loop, this attribute is optional
O step—Specifies an optional increment for the loop, default is 1

XML Transformation Tags

The XML Transformation tags of the JSTL XML tags provide support to transform the XML document with the
given XSL stylesheet. This part of JSTL tags contain two tags, <x:transform> and <x:param>. The following
section explains these tags in detail.

459

Chapter 12

The <x:transform> Tag
The <x:transform> tag transforms an XML document using the given XSL style sheet.
The following is the syntax of the <x:transform> tag of JSTL:
=xitransform attributes> {body content] </x:transforms
The attributes of the <x:transform> tag are:
O doc—Takes an XML document to.be parsed in the form of a string or a Reader object. The Reader object

locates the XML document, or an org.w3c.dom.Document object or an object that is exported by <x:parse>
or <x:set> tag,.

O xslt—Takes an XSLT stylesheet document for transformation in the form of a string or a Reader object. The
Reader object locates the XML document or an org.w3c.dom.Document object or an
javax.xml.transform Source object.

docSystemlId — Takes the system identifier (URI) for parsing the XML document.
xsltSystemld - Takes the system identifier (URI) for parsing the XSLT stylesheet document,
var—Takes the variable name to which the transformed XML document has to be set.

scope —Specifies the scope of the var attribute.

result—The javax.xml.transform.Result object that captures or processes the transformation result.

OCcCDoo-

The <x:param> Tag
The <x:param> tag is used to set transformation parameters. The <x:param> tag should be used within the body
of the <x:transform> tag.

The following is the syntax of the <x:param> tag of JSTL:

<xiparam attributes> {body..content] </x:iparams . o . o
The attributes of the <x:param> tag are: ;
O name— Takes the name of the transformation parameter.

Q value—Specifies the value of the transformation parameter. This attribute is optional; you can specify the
value of the param tag in the body content if you do not want to use the value attribute.

Implementing JSTL Tags

JSTL can be used with the Web applications to access the specified tag libraries. The user needs to specify the tag
libraries in the JSP page. The JSP engine is capable of accessing the specified tag library by using the Jar files
available in the lib directory of the application. The tags from the specified tag library can be accessed by using
the prefix of the tag library. The jstlex application demonstrates the use of JSTL tags in the JSP page. In Listing
12.55, the JSP pages are used to show the use of the JSTL tags in generating a Web page (you can find the
GetEmpDetails jsp file in the code\ Java EE\ Chapter 12\ jstlex9 folder on the CD):

Listing 12.55: The GetEmpDetails.jsp File

<%@taglib uri="http://java.sun.com/jstl/sq1" prefix="5q1"%
<X@taglib uri="http://java.sun.com/jst1/core" prefix="c"%
XQtaglib uri="http://java.sun.com/3st/fme" prefix="fuor %= - -
<c:if test="${lempty param.language}” var="lang flag"> -
<fmt:setlocale value="${param. language}™/> . :
<ciif test="${lempty param.country && lang_flag}"s. . . L0
<ﬁ1§:setLoca1e value="${param.Tanguage}_${param.country}*/>
«sql:setDatasource driver="com;mys.l.jdbc;nriVerf:nrl#P.,:. G e
dhc:mxsg]://locaihost:3306/sam£%ef user="root" password="root” var="myds"

scope="request” /> ; P R .
sal,hiredate from employee” var="result"

<sq1:queqy sql="select empno, deptro, ename,
scope="page" datasource="${requestscope.myds}"/>
<htm1> <body> . o o o
~pisplay Currency ahd Date in: ‘<pres . - T e e T e B
<a hrefn"qgtsmpaetails;;sp?languageaen&ceuntr =U8">Engl ish(usyc/a> <a
href=“Get£mpDetai1s.jsp.1anguage=en&country=g "sEnglish{uUK)</ax <a " .

460

Working with JSP

href="GetEmpDetails. jsp?1l anguage—en&country=Au">Eng'l1sh(Au) <a
href-"GetEmpDetaﬂs]sp'?'languagemt >Ita'l‘| an-c/a: :
</pre> 3 N
<table bor'der-"l“
<tr>

< forsach wtemsé
<th>«<ciout va1ue-“i{co‘lname}"ix/th}
</c: 'For'Each> T

</tr> : : -
<c:forgach 1tems="${page5cope resuTt rows}" var="row"s-
<trs <td> TR
<Ciout va’lue—"i{row empno}t/> LS
</td> <tds :
<Ciout va'luen-"i{row deptno}"/> RSt o
</td> <tds’ R s :
<c:out values"S{row.ename}"/>
</td> <td> - : :
<fmt: formatnumber valtue="${row. sal}®. type:“currency"/:» "
<ftd> <td>

L

<fmt: fermatoate va1ue=-’-:-
</td> </tr> " :
</c:foreach>
} </tahle> I
</hody> </htm1> o

{row hiredate}" types"date’/>

{pages«:ppe restﬂt 501 umnﬂames}" varz"tomame'b

Listing 12.56 shows the web.xml ﬁle o set the welcome page (you can find the webxmi in the code\]ava

EE\ Chapter 12\ jstlex9\ WEB-INF folder):

Listing 12.56: The web.xml File
<web-app>
<we1 comd ~Fite

: </we1come-f1 Te- 'l'ist> .
" </web-app> - - S
Figure 12.44 shows the tree structure of the]stiex9 apphcatlon

[= 0
L oE i WEBIE
: -3 dasses
[I)

v myse-connector Java-5.0.4-in.jar
‘v standard jar
‘@ CetEmpDetads. 5p

Figure 12.44: Showing Directory Structure of the jstlex3 Application

Copy jstlex9 folder into <tomcat home>\ webapps folder, and start the server. Browsing GetEmpDetails.jsp page
with the URL http://localhost:9090/jstlex9/GetEmpDetails.jsp which presents the employee

details as shown in Fxgure 12.45, considering the browser language which is configured to en-US:

R

o Fwomes ['

wikash $1.000.00 Dec 20, 1980
suchita S400 60 Dec 12, 1989

206 10N lmmkabh 580000 Dec 13, 1985
RUTI 590000 Nov 11, 1985~
e) memmmnon T ""-"-,."-' *‘m’- e

Fugure 12.45: Dlsplaying Currency and Sate in US English

461

Chapter 12

Now, to view the date and salary in the default format of UK, click the English (UK) hyperlink in Figure 12.45.
The default format of salary (currency} and data in UK are displayed as shown in Figure 12.46:

@ menaiboaed Mot 0n iy s RNy v

Figure 12.46: Disptaying Currency and Date in UK English

To view the date and salary in the default format of Australia, click the English (AU) hyperlink in Figure 12.46.
The default format of salary (currency) and data in Australia are displayed as shown in Figure 12.47:

Figure 12.47: Displaying Currency and date in English (AU}

To view the date and salary in the default format of Italy, click the Italian hyperlink in Figure 12.47. The default
format of salary (currency) and data in Italy are displayed as shown in Figure 12.48:

462

tr

Working with JSP

In this application, we have used the core, SQL, and formatting tags to create a connection with database and to
format the data to be displayed on JSP page. The JSTL tag library is imported in the JSP page to implement these
JSTL tags.

Summary

This chapter described Java Server Pages (JSP), a technology used to create dynamic Web pages. After
introducing JSP, the chapter covered the advantages of JSP over Servlets to create complex views, It also
described JSP architecture and then given a detailed description of the various stages of the JSP life-cycle.

In this chapter, you have also learned about various types of JSP scripting tags, implicit objects, and JSP
directives. Scripting tags allow us to write the Java code in JSP pages. You also learned how to create JSP pages
by using the scripting tags. You learned that implicit objects are used in a JSP page to access the Java code. JSP
directives are used to import a Java file into a JSP page to control the processing of the entire page in an
application. JSP directives allow you to include other pages into the context of a JSP page. The JSP action tags
and bean components available in a JSP page are also discussed in this chapter. You have leamed, action tags
such as <jsp:useBean>, <jsp:setProperty>, <jsp:getProperty>, and <jsp:text> along with the syntax to use them.
Then, we created an application that helps in creating, declaring, and reading the properties of a bean. We also
deployed and executed the application to see its output.

Towards the end, the chapter has familiarized you with the JSTL core tags, SQL tags, formatting tags, and XML
tags. This chapter has also demonstrated the implementation of JSTL tags with the help of numerous
applications. The next chapter discusses the concepts of JDBC,

Quick Revise
Q1 WhatisJSP?

Ans. JSP stands for Java Server Pages. JSP is a standard Java extension used to simplify the creation and
management of dynamic Web pages.

Q2 What are the stages of the JSP lifecycle?
Ans. O Page Translation

Compilation

Loading & Initialization

Request Handling

Destroying (End of service)

Q.3 Why is JSP preferred over Servlets?

Ans. Both, Servlets and JSPs are server-side components used to generate dynamic HTML pages; however,
JSF is preferred over Servlet as it is developed by using a simple HTML template and is automatically
handled by the JSP container.

Q.4 Name the scripting tags available in JSP,
Ans. Scriptlet, Declarative, and Expression
Q.5 Which of the following are implicit objects?
Option 1: request
Option 2: config
S Option 3: context
Option 4: session
Ans. Options 1,2, and 4
Q.6 What is the type of implicit object exception?
Ans. java.lang. Throwable

Ooo o

483

Chapter 12

Q.7
Ans,

Qs
Ans.

Q.9
Ans.

Q.10
Ans,

Q.11
Ans,

Q.12
Ans.

Q.13
Ans,

Q14
Ans.

Q.15
Ans.

Q16
Ans.

Q.17
Ans.

Q.18
Ans.

Name the directive tags available as pre JSP specifications.

O page
O include
O taglib

What is the use of page and include directive tags?

O Page—The page directive tag holds the instructions used by the translator during the translation
stage of the JSP lifecycle. These instructions affect the various properties associated with the JSP
page.

2 Include—The include directive tag is used to merge the contents of two or more files during the
translation stage of the JSP lifecycle.

Name the attributes of the <jsp:useBean> tag.

0o id

Q scope

g class

Q beanName
Q type

What is the use of fallback action tag?

The fallback action tag allows us to specify a text message to be displayed if the required plug-in cannot
run.

What is JSTL?

JSP Standard Tag Library (JSTL) is a collection of custom tag libraries, which provide core functionality
used for JSP documents.

How many types of tag libraries are provided by JSTL?

JSTL provides 4 types of tag libraries that can be used with JSP pages.

What are JSTL core tags used for?

The JSTL core tags are used to perform iteration, conditional processing, and also provide support of
expression language for the tags in JSP pages.

What is the function of the <c:import> tag?

The <c: import> tag is used to include another resource, such as another JSP or HTML page, in a JSP
page.

What is the difference between <c:import> and <jsp:include>?

The <c: import> tag is similar to the <jsp: include> tag. However, the <c: import> tag allows us to
include the pages in another Web application. This tag also allows us to save the included page output
into a variable instead of directly writing it to the output, which allows us to process the included page
output before writing it to the output, if necessary.

Why are JSTL SQL tags used?

The SQL tags are used to access the relational database specified in JSP pages. The SQL tags are used for
rapid prototyping and developing Web applications.

What are JSTL formatting tags used for?

The format Tag library provides the support for internationalization. This tag provides the formatting of
data in different domains. The data can be dates, numbers, or time specifications in different domains.

What are JSTL XML tags used for?

The XML tag library is used to work with XML data used in the JSP pages. The XML tag library helps
parse and transform the data used in a JSP page.

